Собираем мир по частям: что считают суперкомпьютеры Рассуждая о сложности устройства жизни, профессор кафедры физики Университета ИТМО Александр Чирцов приводит следующий пример. Если бросить на бетонный пол стакан с водой, он разобьется. Команда физиков и программистов даже сможет дать примерный ответ, как именно разлетятся осколки и разольется вода, если дать им достаточно времени и исходных данных. А вот что именно произойдет, если бросить на этот же пол кошку, пока не сможет ответить никто: слишком сложная система. Несмотря на то, что моделировать и предсказывать поведение кошки ученые научатся еще очень нескоро, это не значит, что они вовсе не берутся за вычисление закономерностей и предсказание состояний сложных систем. Наоборот, вычислительная наука в последние годы только набирает обороты. Представители международной команды Университета ИТМО рассказали нашей редакции о том, что именно приходится считать суперкомпьютерам и зачем нужны высокопроизводительные вычисления. Моделирование и предсказание поведения сложных социальных систем – одно из направлений работы специалистов Университета ИТМО и их иностранных коллег в рамках научно-образовательного центра коллаборативного типа TROIKA. Профессор Амстердамского университета Питер Слоот руководит выполнением проекта, который поддерживается Российским научным фондом. Исследование посвящено поиску и разработке методов и масштабируемых алгоритмов для анализа критических ситуаций, которые могут возникнуть в сложных социальных системах. Питер Слоот рассказывает, что он и его коллеги пытаются воссоздать на компьютере разные кусочки мира, от отдельных биологических объектов и до целых городов, чтобы предсказывать их поведение и научиться на него влиять. Собрав воедино обрывочные сведения, исследователи задались вопросом, что нужно сделать для того, чтобы нарушить работу такой сети и нанести ей максимальный ущерб. Можно попробовать удалить узел-другой, можно перекроить сеть и исключить сразу группу. Для каждого случая – отдельный сценарий, и всего их накапливается не одна тысяча. По словам Сергея Иванова, найти оптимальное решение важно потому, что за обезличенными узлами компьютерной модели стоят настоящие производители и распространители наркотиков. На поиск неуловимого преступника можно потратить не один месяц, в то время как его арест может никак не отразиться на благосостоянии криминального бизнеса. Первые итоги моделирования показали именно такие неожиданные результаты: оказалось, что борьба с системой может даже привести к увеличению ее эффективности. «Изначально мы смотрели на проблему с той же точки зрения, что и европейская полиция. Допустим, есть часть цепочки распространения наркотических веществ, которая отвечает за финансы, и ей нужно вести переговоры с основными дилерами. Такой человек связывает друг с другом очень большое количество других звеньев, и, казалось бы, без него сеть работать не будет. Полиция обычно ищет таких людей, наблюдает за ними и пытается арестовать, чтобы разрушить сеть, – рассказывает Питер Слоот. – Но мы воспроизвели эти сценарии на компьютере, и симуляция показала, что на самом деле это только усиливает сеть, укрепляет остальные ее участки». Слишком сложная простота Другое исследование, которым занимаются ученые из Университета ИТМО и их иностранные коллеги при содействии Российского научного фонда, посвящено так называемым «булевым сетям». Свое название они берут от логического типа данных (boolean), которые принимают значение «истина» (true) или «ложь» (false), – узлы булевой сети принимают его в зависимости от сигнала, поступающего извне. Профессор Варшавского политехнического университета Януш Холыст рассказывает, что исследование, которым он руководит, посвящено вопросу о том, как могут меняться связи и функции логических структурных единиц такой сети. «При помощи булевых сетей можно строить модель мозга, прогнозировать популяционную генетику, моделировать социальную динамику. Например, все мы производим информацию, устанавливаем связи. Сейчас я отвечаю на вопрос, и мой ответ позже прочитают люди. Но я не буду находиться на одном месте вечно – социальные системы не являются постоянными. Единицы сети могут адаптироваться к ситуации, получать информацию от других единиц и передавать ее дальше», – говорит Януш Холыст. Коллега Питера Слоота по Амстердамскому университету Майкл Лис рассказал об одном из аспектов эксперимента. Для того, чтобы следить за поведением толпы, разрабатываются специальные браслеты-передатчики. Через определенные промежутки времени они включаются, передают свой идентификатор в пределах радиуса действия, принимают сигналы других браслетов и «засыпают» до следующей передачи. Устройства не поддерживают геолокацию, но она и не нужна: по сведениям, получаемым с браслетов, можно в режиме реального времени наблюдать за динамикой толпы и относительным позиционированием участников комплексной системы. Если сеть статична, значит, люди стоят на месте, и наоборот, а по устойчивым связям между нодами можно видеть, как люди собираются в группы. Суперкомпьютер для суперпрогноза Отметим, что в Университете ИТМО также проводятся исследования, связанные с суперкомпьютерным моделированием не только поведения социальных систем. Среди них – проекты, посвященные многомасштабному моделированию динамических процессов в кровеносных сосудах, предсказание экстремальных явлений и оценка рисков устойчивого развития сложных систем, а также моделирование процессов большого города на основе данных индивидуальной мобильности населения. «В мире есть бесконечное множество объектов, которые взаимодействуют друг с другом, это может происходить непредсказуемо, нелинейно, и незначительное изменение может привести к большим последствиям. Но, чтобы научиться понимать мир вокруг, не надо думать, что он сложный – он комплексный», – резюмирует Питер Слоот. Александр Пушкаш, Редакция новостного портала Университета ИТМО Дата публикации 20.01.2016 >>>Перейти к новости >>>Перейти ко всем новостям >>>Перейти на портал Университета ИТМО