Íîâîñòè êëåòî÷íûõ òåõíîëîãèé ôóíêöèîíèðóùåé èììóííîé ñèñòåìå, òåì áîëåå, ÷òî âñå âûñîêîàíòèãåííûå êëåòêè áûëè óäàëåíû èç òðàíñïëàíòàòà. Êîðåéñêèå èññëåäîâàòåëè íà÷àëè êëèíè÷åñêóþ ïðîãðàììó ïî òðàíñïëàíòàöèè ñòâîëîâûõ êëåòîê ÏÊ äëÿ ëå÷åíèÿ ÒÑÌ ËÈÒÅÐÀÒÓÐÀ: 1. Áåðñåí¸â À.Â. Ïåðñïåêòèâû èñïîëüçîâàíèÿ êëåòîê ïóïîâèííîé êðîâè äëÿ òåðàïèè íåãåìàòîëîãè÷åñêèõ çàáîëåâàíèé. Êëåòî÷íàÿ òðàíñïëàíòîëîãèÿ è òêàíåâàÿ èíæåíåðèÿ. http://celltranspl.ru/journal/publications/?MESSAGES[1]= SHOW_PUBLICATION&PUBLICATION_ID=812 2. Paralyzed woman walks again after stem cell therapy. World - AFP, November 28, 2004. http://www.cordblood.com/cord_blood_news/stem_cell_news/ a_paralyzed.asp 3. Jeong J.A., Gang E.J., Hong S.H. et al . Rapid neural differentiation of human cord blood-derived mesenchymal stem cells. Neuroreport. 2004; 15: 1731-4. 4. Kuh S.U., Cho Y.E., Yoon D.H. et al. Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat. Acta Neurochir. (Wien) 2005; 147: 985-92. 5. Zhao Z.M., Li H.J., Liu H.Y. et al. Intraspinal transplantation of CD34+ human umbilical cord blood cells after spinal cord hemisection injury improves functional 31 â Seoul National University 2 ãîäà íàçàä.  íàñòîÿùåå âðåìÿ ïðîäîëæàåòñÿ I ôàçà èñïûòàíèé, êîòîðàÿ ïðèçâàíà ïîäòâåðäèòü áåçîïàñíîñòü ìåòîäà è ïîçâîëèò îòâåòèòü íà íåêîòîðûå äèñêóññèîííûå âîïðîñû. recovery in adult rats. Cell Transplant. 2004; 13: 113-22. 6. Mareschi K., Biasin E., Piacibell W. et al . Isolation of human mesenchymal stem cells: bone marrow versus umbilical cord blood. Haematologica 2001; 86:1099-100. 7. Wexler S.A., Donaldson C., Denning-Kendall P. et al . Adult bone marrow is a rich source of human mesenchymal stem cells but umbilical cord and mobilized adult blood are not. Br. J. Haematol. 2003; 121: 368-74. 8. Lee O.K., Kuo T.K., Chen W.M. et al . Isolation of multi-potent mesenchymal stem cells from umbilical cord blood. Blood 2004; 103: 1669-75. 9. Knoller N., Auerbach G., Fulga V. et al. Clinical experience using incubated autologous macrophages as a treatment for complete spinal cord injury: phase I study results. J. Neurosurg. Spine 2005; 3: 173-11. 10. Hashimoto M., Nitta A., Fukumitsu H. et al. Inflammation-induced GDNF improves locomotor function after spinal cord injury. Neuroreport. 2005; 16: 99-102. 11. Schwartz M., Yoles E. Macrophages and dendritic cells treatment of spinal cord injury: from the bench to the clinic. Acta Neurochir. Suppl. 2005; 93: 147-50. Ïîäãîòîâèë À.Â. Áåðñåíåâ Ïî ìàòåðèàëàì Cytotherapy 2005; 7: 368-73 Ñóäîðîãè è êîìà êàê îñëîæíåíèÿ, ñâÿçàííûå ñ òîêñè÷íîñòüþ êðèîïðîòåêòîðà (ÄÌÑÎ) ïðè èíôóçèè ãåìîïîýòè÷åñêèõ êëåòîê â êëèíèêå òðàíñïëàíòàöèè êîñòíîãî ìîçãà Äèìåòèëñóëüôîêñèä (ÄÌÑÎ) äî ñèõ ïîð îñòà¸òñÿ îáùåïðèíÿòûì è ñàìûì ðàñïðîñòðàí¸ííûì êðèîïðîòåêòîðîì âî âñ¸ì ìèðå, â òîì ÷èñëå è äëÿ êðèîêîíñåðâèðîâàíèÿ ãåìîïîýòè÷åñêèõ êëåòîê â êëèíèêå òðàíñïëàíòàöèè êîñòíîãî ìîçãà (ÒÊÌ).  ñâÿçè ñ âûñîêîé òîêñè÷íîñòüþ ýòîãî âåùåñòâà â êëèíèêå ÒÊÌ áûë îïèñàí ðÿä îñëîæíåíèé, â òîì ÷èñëå è òàêèå òÿæ¸ëûå, êàê ýíöåôàëîïàòèÿ [1,2] è äûõàòåëüíàÿ íåäîñòàòî÷íîñòü [3].  æóðíàëå Leukemia & Lymphoma, áåëüãèéñêèìè àâòîðàìè îïèñàíî íîâîå íàáëþäåíèå âîçíèêíîâåíèÿ ñóäîðîã è êîìû, ñâÿçàííûõ ñ òîêñè÷íîñòüþ ÄÌÑÎ ïîñëå àóòîòðàíñïëàíòàöèè ãåìîïîýòè÷åñêèõ êëåòîê. Ïàöèåíòó 49 ëåò âûïîëíÿëè òðàíñïëàíòàöèþ ìîáèëèçèðîâàííûõ ãåìîïîýòè÷åñêèõ àóòîêëåòîê ïî ïîâîäó ðåöèäèâà ëèìôîìû. Ïðè èíôóçèè «íåîòìûòûõ» êëåòîê, ñîäåðæàùèõ 10% ÄÌÑÎ, íàáëþäàëè âîçíèêíîâåíèå òîíèêî-êëîíè÷åñêèõ ñóäîðîã. Ïàöèåíòà ïåðåâåëè â ïàëàòó èíòåíñèâíîé òåðàïèè, ãäå ñóäîðîãè áûëè êóïèðîâàíû. Èíôóçèþ îñòàâøåãîñÿ òðàíñïëàíòàòà ïðîâîäèëè ïîñëå 2-êðàòíîé îòìûâêè êëåòîê, îñëîæíåíèé íå íàáëþäàëè. ×åðåç 17 äíåé, â ñâÿçè ñ îòñóòñòâèåì ýíãðàôòèíãà áûëî ðåøåíî âûïîëíèòü ïîâòîðíóþ òðàíñïëàíòàöèþ àóòîêëåòîê, êðèîêîíñåðâèðîâàííûõ 4 ãîäà íàçàä. Ïðè âûïîëíåíèè ïîâòîðíîé òðàíñïëàíòàöèè êëåòêè áûëè äâàæäû îòìûòû îò êðèîïðîòåêòîðà, îäíàêî ó ïàöèåíòà âíîâü ðàçâèëèñü ãåíåðàëèçîâàííûå ñóäîðîãè è êîìà. Ïàöèåíò íàõîäèëñÿ â êîìå ïî øêàëå Ãëàçãî (GSC) < 7 íà èñêóññòâåííîé âåíòèëÿöèè ë¸ãêèõ. Èíñòðóìåíòàëüíûå ìåòîäû (ýëåêòðîýíöåôàëîãðàôèÿ, êîìïüþòåðíàÿ è ìàãíèòíî-ðåçîíàíñíàÿ òîìîãðàôèÿ) ïîäòâåðäèëè íàëè÷èå òÿæ¸ëîé ýíöåôàëîïàòèè. ×åðåç 35 äíåé ïàöèåíò áûë ïåðåâåä¸í èç ðåàíèìàöèè â îáùóþ ïàëàòó. Ãåìàòîëîãè÷åñêèå äàííûå ïîêàçàëè íåïîëíóþ ðåêîíñòèòóöèþ êîñòíîãî ìîçãà ñ âîññòàíîâëåíèåì íîðìàëüíîãî êîëè÷åñòâà íåéòðîôèëîâ. ×åðåç 3 ìåñÿöà ïîñëå òðàíñïëàíòàöèè ïàöèåíò óìåð â ñâÿçè ñ îñëîæíåíèÿìè îñíîâíîãî çàáîëåâàíèÿ. Àâòîðû âïåðâûå îïèñàëè êàðòèíó òîêñè÷åñêîé êîìû, ñâÿçàííîé ñ òîêñè÷íîñòüþ ÄÌÑÎ, îòëè÷íóþ îò ýíöåôàëîïàòèè, âîçíèêàþøåé ïðè òåðàïèè äðóãèìè âåùåñòâàìè è ïðåïàðàòàìè. Èíòåðåñíî, ÷òî àâòîðû íàáëþäàëè ðàçâèòèå ãåíåðàëèçîâàííûõ ñóäîðîã, âîçíèêàþùèõ íåìåäëåííî âî âðåìÿ èíôóçèè ðàçìîðîæåííîãî êëåòî÷íîãî òðàíñïëàíòàòà, áåç êàêîãîëèáî îòÿãîù¸ííîãî àíàìíåçà. Äàííûå èíñòðóìåíòàëüíûõ èññëåäîâàíèé îòðèöàëè íàëè÷èå ýïèëåïòîãåííûõ î÷àãîâ â ãîëîâíîì ìîçãå. Ðàíåå óæå îïèñûâàëèñü ñóäîðîãè ïîñëå òðàíñïëàíòàöèè ãåìîïîýòè÷åñêèõ êëåòîê [1, 2], îäíàêî ýòî íàáëþäåíèå ïîçâîëèëî ÷¸òêî ñâÿçàòü è îïèñàòü ÄÌÑÎâûçâàííóþ ýíöåôàëîïàòèþ. Òîêñè÷íîñòü êðèîïðîòåêòîðà îñòà¸òñÿ àêòóàëüíîé ïðîáëåìîé ìíîãèõ öåíòðîâ ÒÊÌ. Ýòî ñâÿçàíî, â òîì ÷èñëå, è ñ òåì, ÷òî äî ñèõ ïîð íå ðàçðàáîòàíû åäèíûå êðèòåðèè è òðåáîâàíèÿ ê ïîäãîòîâêå ðàçìîðîæåííîãî òðàíñïëàíòàòà ãåìîïîýòè÷åñêèõ êëåòîê ïåðåä èíôóçèåé. Òàê, íåäàâíî, âåäóùàÿ îðãàíèçàöèÿ â Åâðîïå - EBMT (The European Group for Blood and Marrow Transplantation), ðåãóëèðóþùàÿ äåÿòåëüíîñòü öåíòðîâ ÒÊÌ, Êëåòî÷íàÿ òðàíñïëàíòîëîãèÿ è òêàíåâàÿ èíæåíåðèÿ ¹ 1 (3), 2006 32 Íîâîñòè êëåòî÷íûõ òåõíîëîãèé ïðîâåëà îïðîñ ïî òåõíèêå êðèîêîíñåðâàöèè è ïîäãîòîâêå àóòîòðàíñïëàíòàòà ïåðåä èíôóçèåé. Äàííûå, ïîëó÷åííûå èç 97 öåíòðîâ, î÷åíü ñèëüíî îòëè÷àëèñü äðóã îò äðóãà êàê ïî èñïîëüçóåìîé äëÿ êðèîêîíñåðâàöèè êîíöåíòðàöèè ÄÌÑÎ, òàê è ïî ïîçèöèè «îòìûâêè òðàíñïëàíòàòà» ïåðåä èíôóçèåé. Îñëîæíåíèÿ, ñâÿçàííûå ñ òîêñè÷íîñòüþ ÄÌÑÎ, íàáëþäàëèñü ñ ÷àñòîòîé 1 ñëó÷àé èç 70 [4]. Îñíîâíûå âûâîäû è ðåêîìåíäàöèè, îñíîâàííûå íà ñîîáùåíèÿõ î òåõíèêå êðèîêîíñåðâèðîâàíèÿ ñ èñïîëüçîâàíèåì ÄÌÑÎ, ðàçìîðîçêè è èíôóçèè ãåìîïîýòè÷åñêèõ êëåòîê, ìîæíî ñâåñòè ê ñëåäóþùèì: 1. Áîëüøèíñòâî èññëåäîâàòåëüñêèõ ãðóïï ñêëîíÿåòñÿ ê ìíåíèþ, ÷òî ñíèæåíèå êîíöåíòðàöèè ÄÌÑÎ äî 5% (âìåñòî ñòàíäàðòíî èñïîëüçóåìîé 10%), ïðè çàìîðîçêå òðàíñïëàíòàòà íå âëèÿåò íà åãî êà÷åñòâî ïîñëå ðàçìîðîçêè [5-7]. ËÈÒÅÐÀÒÓÐÀ: 1. Higman M.A., Port J.D., Beauchamp N.J. Jr, Chen A.R. Reversible leukoencephalopathy associated with re-infusion of DMSO preserved stem cells. Bone Marrow Transplant. 2000; 26: 797800. 2. Dhodapkar M., Goldberg S.L., Tefferi A., Gertz M.A. Reversible encephalopathy after cryopreserved peripheral stem cell infusion. Am. J. Hematol. 1994; 45: 187-8. 3. Benekli M., Anderson B., Wentling D. et al. Severe respiratory depression after dimethylsulphoxide-containing autologous stem cell infusion in a patient with AL amyloidosis. Bone Marrow Transplant. 2000; 25(12): 1299-301. 4. Windrum P., Morris T.C., Drake M.B. et al. EBMT Chronic Leukaemia Working Party Complications Subcommittee. Variation in dimethyl sulfoxide use in stem cell transplantation: a survey of EBMT centres. Bone Marrow Transplant. 2005; 36: 601-3. 5. Bakken A.M., Bruserud O., Abrahamsen J.F. No differences in colony formation of peripheral blood stem cells frozen with 5% or 10% dimethyl sulfoxide. J. Hematother. Stem. Cell Res. 2003; 12: 351-8. 6. Abrahamsen J.F., Rusten L., Bakken A.M., Bruserud O. Better preservation of early hematopoietic progenitor cells when human peripheral blood progenitor 2. Ïðèñóòñòâèå «íàòèâíîé» êîíöåíòðàöèè ÄÌÑÎ â òðàíñïëàíòàòå âî âðåìÿ èíôóçèè êëåòî÷íîé ñóñïåíçèè ìîæåò ïðèâåñòè ê ðÿäó ñåðü¸çíûõ îñëîæíåíèé [1-4]. 3. Îòìûâêà òðàíñïëàíòàòà ãåìîïîýòè÷åñêèõ êëåòîê îò êðèîïðîòåêòîðà íå âëèÿåò íà êîëè÷åñòâî, æèçíåñïîñîáíîñòü CD34+ êëåòîê è ñêîðîñòü ýíãðàôòèíãà [8, 9]. Òàêèì îáðàçîì, íåîáõîäèìî ñîçäàíèå ñòàíäàðòîâ ïî êðèîêîíñåðâàöèè è ïîäãîòîâêå òðàíñïëàíòàòà ãåìîïîýòè÷åñêèõ êëåòîê â îíêîãåìàòîëîãè÷åñêîé êëèíèêå. Ïîçèöèÿ áîëüøèíñòâà êëèíè÷åñêèõ ãðóïï íåîáõîäèìà îòìûâêà êðèîïðîòåêòîðà ÄÌÑÎ ïåðåä èíôóçèåé êëåòîê. Ýòî íå âëèÿåò íà êà÷åñòâî òðàíñïëàíòàòà è ïîçâîëÿåò ïðåäóïðåæäàòü ðàçâèòèå òîêñè÷åñêèõ îñëîæíåíèé. Òåì áîëåå, ÷òî ñàìà ïðîöåäóðà «îòìûâêè» çàíèìàåò îêîëî 10-15 ìèíóò è ìîæåò áûòü àâòîìàòèçèðîâàíà [10, 11]. cells are cryopreserved with 5 percent dimethylsulfoxide instead of 10 percent dimethylsulfoxide. Transfusion 2004; 44: 785-9. 7. Curcoy A.I., Alcorta I., Estella J. et al. Cryopreservation of HPCs with high cell concentration in 5-percent DMSO for transplantation to children. Transfusion 2002; 42: 962. 8. Syme R., Bewick M., Stewart D. et al. The role of depletion of dimethyl sulfoxide before autografting: on hematologic recovery, side effects, and toxicity. Biol. Blood Marrow Transplant. 2004; 10: 135-41. 9. Mazet S., Hecquet O., Espinousse D. et. al. Wasing out DMSO from thawed peripheral blood progenitor cell bags does not result in loss of CD34+ cells. ISHAGE VII annual symposium (Quebec, Canada, 2001 june 14-17) abstracts book, abst. # 80. 10. Calmels B., Houze P., Hengesse J.C. et al. Preclinical evaluation of an automated closed fluid management device: Cytomate, for washing out DMSO from hematopoietic stem cell grafts after thawing. Bone Marrow Transplant. 2003; 31: 823-8. 11. Rodriguez L., Velasco B., Garcia J., Martin-Henao G.A. Evaluation of an automated cell processing device to reduce the dimethylsulfoxide from hematopoietic grafts after thawing. Transfusion 2005; 45: 1391-7. Ïîäãîòîâèë À.Â. Áåðñåíåâ Ïî ìàòåðèàëàì Leuk. Lymphoma 2005; 46: 1671-4 Ìåòîä ýíäîñêîïè÷åñêîãî ïîëó÷åíèÿ áèîïòàòà ãîëîâíîãî ìîçãà è âûäåëåíèÿ èç íåãî íåéðàëüíûõ ñòâîëîâûõ êëåòîê äëÿ àóòîòðàíñïëàíòàöèè Ïîëó÷åíèå äîñòàòî÷íîãî êîëè÷åñòâà íåèììóíîãåííûõ íåéðàëüíûõ êëåòîê ÿâëÿåòñÿ àêòóàëüíîé ïðîáëåìîé êëèíè÷åñêîé íåéðîòðàíñïëàíòàöèè. Äëÿ çàìåùåíèÿ íåôóíêöèîíèðóþùèõ íåðâíûõ êëåòîê èëè ñòèìóëÿöèè íåéðîãåíåçà in situ â êëèíè÷åñêîé íåéðîòðàíñïëàíòàöèè íóæíû ñïåöèàëèçèðîâàííûå íåðâíûå êëåòêè èëè ïðîãåíèòîðû ñ ïîòåíöèàëîì ê ðîñòó è äèôôåðåíöèðîâêå â íåéðîíàëüíîì íàïðàâëåíèè. Íàèáîëåå ðàñïðîñòðàí¸ííûìè èñòî÷íèêàìè òàêîãî êëåòî÷íîãî ìàòåðèàëà â êëèíèêå ÿâëÿåòñÿ ãîëîâíîé ìîçã àáîðòèðîâàííûõ ýìáðèîíîâ (èëè ïëîäîâ) ÷åëîâåêà [1, 3] è ñîáñòâåííûå íåéðîíàëüíûå êëåòêè ïàöèåíòà, âûäåëåííûå èç îáîíÿòåëüíîé çîíû ñëèçèñòîé îáîëî÷êè íîñà (olfactory ensheathing cells) [2].  êà÷åñòâå àëüòåðíàòèâíîãî èñòî÷íèêà êëåòî÷íîãî ìàòåðèàëà ðàññìàòðèâàþòñÿ àëëîãåííûå íåéðîíàëüíûå ñòâîëîâûå êëåòêè (ÍÑÊ) ãîëîâíîãî ìîçãà òðóïîâ. ÍÑÊ áûëè âûäåëåíû èç ðàçëè÷íûõ îòäåëîâ ãîëîâíîãî ìîçãà (âêëþ÷àÿ êîðó, ñóáâåíòðèêóëÿðíóþ çîíó, ñåò÷àòêó, ãèïïîêàìï è îáîíÿòåëüíóþ Êëåòî÷íàÿ òðàíñïëàíòîëîãèÿ è òêàíåâàÿ èíæåíåðèÿ ¹ 1 (3), 2006 çîíó) òðóïîâ â ðàçíîå âðåìÿ ïîñëå ñìåðòè äî 140 ÷àñîâ è îõàðàêòåðèçîâàíû [4-6]. Îäíàêî, èñïîëüçîâàíèå ýòèõ èñòî÷íèêîâ ÍÑÊ èìååò òå èëè èíûå îãðàíè÷åíèÿ èëè íåäîñòàòêè ìàëîå êîëè÷åñòâî êëåòîê (ôåòàëüíûé ìîçã è àóòîãåííûé ìàòåðèàë), ïðîáëåìà èíôåêöèîííîé áåçîïàñíîñòè (ôåòàëüíûé è òðóïíûé àëëîãåííûé ìàòåðèàë), ïðîáëåìà îíêîãåííîé áåçîïàñíîñòè (ýìáðèîíàëüíûå ñòâîëîâûå êëåòêè è èõ äåðèâàòû, ðàííèå âçðîñëûå ñòâîëîâûå êëåòêè) è èììóíîëîãè÷åñêèé êîíôëèêò (àëëîãåííûé è êñåíîãåííûé ìàòåðèàë). Òàêèì îáðàçîì, ïîèñê îïòèìàëüíîãî èñòî÷íèêà êëåòî÷íîãî ìàòåðèàëà äëÿ çàìåñòèòåëüíîé êëèíè÷åñêîé íåéðîòðàíñïëàíòàöèè îñòà¸òñÿ àêòóàëüíîé çàäà÷åé. Åñëè áû ïðîáëåìà äîñòàòî÷íîãî êîëè÷åñòâà êëåòî÷íîãî ìàòåðèàëà áûëà ðåøåíà, òî «èñòî÷íèêîì âûáîðà» ìîãëè áû ñòàòü àóòîãåííûå ÍÑÊ. Èññëåäîâàòåëè èç øâåäñêîãî Karolinska Institute ïðåäëàãàþò íîâûé ìåòîä âûäåëåíèÿ è ýêñïàíñèè àóòîãåííûõ ÍÑÊ