А. Я. Силенко Учет вращения Земли в экспериментах по поиску

реклама
¨¸Ó³ ¢ —Ÿ. 2007. ’. 4, º 6(142). ‘. 784Ä788
”ˆ‡ˆŠ ‹…Œ…’›• —‘’ˆ– ˆ ’Œƒ Ÿ„. ’…ˆŸ
“—…’ ‚™…ˆŸ ‡…Œ‹ˆ ‚ Š‘…ˆŒ…’•
ˆ‘Š“ ‹…Š’ˆ—…‘Šƒ „ˆ‹œƒ
ŒŒ…’ …‰’
. Ÿ. ‘¨²¥´±μ
ˆ“ ®ˆ´¸É¨ÉÊÉ Ö¤¥·´ÒÌ ¶·μ¡²¥³ ƒ“¯, Œ¨´¸±, ¥²μ·Ê¸¸¨Ö
·μ¢¥¤¥´ ´ ²¨§ ¶·μ¡²¥³Ò Ê봃 ¢· Ð¥´¨Ö ‡¥³²¨ ¶·¨ ¶μ¨¸±¥ Ô²¥±É·¨Î¥¸±μ£μ ¤¨¶μ²Ó´μ£μ ³μ³¥´É („Œ) ´¥°É·μ´ ¢ Ô±¸¶¥·¨³¥´É Ì ¸ ʲÓÉ· Ìμ²μ¤´Ò³¨ ´¥°É·μ´ ³¨ ¨ ¢ ¤¨Ë· ±Í¨μ´´μ³ Ô±¸¶¥·¨³¥´É¥. „²Ö ¤μ¸É¨£´ÊÉμ° ± ´ ¸ÉμÖÐ¥³Ê ¢·¥³¥´¨ Éμδμ¸É¨ ¢ ¤¨Ë· ±Í¨μ´´μ³ Ô±¸¶¥·¨³¥´É¥ ÊÎ¥É
¢· Ð¥´¨Ö ‡¥³²¨ ¤ ¥É ¶·¥´¥¡·¥¦¨³μ ³ ²ÊÕ (¨ ÉμÎ´μ · ¸¸Î¨ÉÒ¢ ¥³ÊÕ) ¶μ¶· ¢±Ê. ‚ Ô±¸¶¥·¨³¥´É Ì
¸ ʲÓÉ· Ìμ²μ¤´Ò³¨ ´¥°É·μ´ ³¨ ÔÉ ¶μ¶· ¢± ¶·¥¢ÒÏ ¥É ¸¨¸É¥³ ɨΥ¸±ÊÕ ¶μ£·¥Ï´μ¸ÉÓ ¨§³¥·¥´¨Ö „Œ ´¥°É·μ´ , ¶·¨Î¥³ ¥¥ ÉμδҰ · ¸Î¥É É·¥¡Ê¥É ¤μ¶μ²´¨É¥²Ó´ÒÌ ¨¸¸²¥¤μ¢ ´¨°. ‚ ¸¢Ö§¨ ¸
Ôɨ³ ¤ ²Ó´¥°Ï¥¥ · §¢¨É¨¥ ¤¨Ë· ±Í¨μ´´μ£μ ³¥Éμ¤ ¤μ²¦´μ ¢ §´ Ψɥ²Ó´μ° ¸É¥¶¥´¨ ¸¶μ¸μ¡¸É¢μ¢ ÉÓ
¶·μ£·¥¸¸Ê ¢ ¶μ¨¸±¥ „Œ ´¥°É·μ´ .
Analysis of the problem of taking into account the Earth's rotation in a search for the electric dipole
moment (EDM) of neutron in experiments with ultracold neutrons and in a diffractional experiment
is fulˇlled. Taking into account the Earth's rotation in the diffractional experiment gives an exactly
calculated correction which is negligible as compared with the accuracy reached at present time. In the
experiments with ultracold neutrons, the correction is greater than the systematical error and the exact
calculation of it needs further investigations. In this connection, further developments of diffractional
method would considerably promote progress in the search for the electric dipole moment of neutron.
PACS: 14.20.Dh, 91.10.Nj
μ¸ÉμÖ´´μ¥ Ê¢¥²¨Î¥´¨¥ Éμδμ¸É¨ ¢ Ô±¸¶¥·¨³¥´É Ì ¶μ ¶μ¨¸±Ê Ô²¥±É·¨Î¥¸±μ£μ ¤¨¶μ²Ó´μ£μ ³μ³¥´É ´¥°É·μ´ ¤¥² ¥É ´¥μ¡Ì줨³Ò³ Ê봃 ¢· Ð¥´¨Ö ‡¥³²¨. ·¨ ¤μ¸É¨£´ÊÉμ°
Ô±¸¶¥·¨³¥´É ²Ó´μ° Éμδμ¸É¨ ¶μ¶· ¢± ± Î ¸ÉμÉ¥ ¶·¥Í¥¸¸¨¨ ¸¶¨´ ´¥°É·μ´ ¢μ ¢´¥Ï´¥³
¶μ²¥ ʦ¥ ´¥ Ö¢²Ö¥É¸Ö ¶·¥´¥¡·¥¦¨³μ ³ ²μ°.
’· ¤¨Í¨μ´´Ò° ³¥Éμ¤ ¶μ¨¸± „Œ ´¥°É·μ´ § ±²ÕÎ ¥É¸Ö ¢ ¨§³¥·¥´¨¨ Î ¸ÉμÉÒ ² ·³μ·μ¢¸±μ° ¶·¥Í¥¸¸¨¨ ¸¶¨´ ʲÓÉ· Ìμ²μ¤´ÒÌ ´¥°É·μ´μ¢ ¢ ¸² ¡μ³ ³ £´¨É´μ³ (B ∼ 1 ³±’²)
¨ ¤μ¸É ÉμÎ´μ ¸¨²Ó´μ³ Ô²¥±É·¨Î¥¸±μ³ (E ∼ 1 Œ‚/³) ¶μ²ÖÌ (¸³. [1]). ‡ ¢¨¸ÖÐ Ö μÉ ¸¶¨´ Î ¸ÉÓ £ ³¨²ÓÉμ´¨ ´ ³¥¤²¥´´μ ¤¢¨¦ÊÐ¥°¸Ö Î ¸É¨ÍÒ ¢ Ô²¥±É·¨Î¥¸±μ³ ¨ ³ £´¨É´μ³ ¶μ²ÖÌ
· ¢´ d
μ
(1)
H = − s · B − s · E,
s
s
£¤¥ μ Å ³ £´¨É´Ò° ³μ³¥´É; d Å „Œ; s Å μ¶¥· Éμ· ¸¶¨´ Î ¸É¨ÍÒ, ¸¶¨´μ¢μ¥ Ψ¸²μ
s ¢ ¤ ´´μ³ ¸²ÊÎ ¥ · ¢´μ 1/2.
“봃 ¢· Ð¥´¨Ö ‡¥³²¨ ¢ Ô±¸¶¥·¨³¥´É Ì ¶μ ¶μ¨¸±Ê „Œ ´¥°É·μ´ 785
‚ Ô±¸¶¥·¨³¥´É Ì, μ¸´μ¢ ´´ÒÌ ´ ¨§³¥·¥´¨¨ Î ¸ÉμÉÒ ¶·¥Í¥¸¸¨¨ ¸¶¨´ ´¥°É·μ´ ¤²Ö
¤¢ÊÌ ¶·μɨ¢μ¶μ²μ¦´ÒÌ ´ ¶· ¢²¥´¨° ³ £´¨É´μ£μ ¶μ²Ö, ¢ ¦´μ° Ö¢²Ö¥É¸Ö ¶·μ¡²¥³ μ¶·¥¤¥²¥´¨Ö ¢¥²¨Î¨´Ò ³ £´¨É´μ° ¨´¤Ê±Í¨¨. ‚ [1, 2] ÔÉ ¶·μ¡²¥³ ·¥Ï ² ¸Ó ¶ÊÉ¥³ ¨§³¥·¥´¨Ö
μÉ´μÏ¥´¨Ö Î ¸ÉμÉ ¶·¥Í¥¸¸¨¨ ¸¶¨´ ´¥°É·μ´μ¢ ¨ Éμ³μ¢ 199 Hg.
Š ± ¨§¢¥¸É´μ, ¢μ ¢· Ð ÕÐ¥°¸Ö ¸¨¸É¥³¥ μÉ¸Î¥É , ¸¢Ö§ ´´μ° ¸ ‡¥³²¥°, ¶μÖ¢²Ö¥É¸Ö § ¢¨¸ÖÐ Ö μÉ ¸¶¨´ ¶μ¶· ¢± ± £ ³¨²ÓÉμ´¨ ´Ê Hrot = −ω · s, ¸¶¨´ ¢· Ð ¥É¸Ö ¸ Ê£²μ¢μ°
¸±μ·μ¸ÉÓÕ ω, · ¢´μ° ¶μ ¡¸μ²ÕÉ´μ° ¢¥²¨Î¨´¥ Ê£²μ¢μ° ¸±μ·μ¸É¨ ¢· Ð¥´¨Ö ‡¥³²¨ ω [3Ä5].
‘ÊÐ¥¸É¢μ¢ ´¨¥ ÔÉμ£μ ÔËË¥±É ¡Ò²μ ¶μ¤É¢¥·¦¤¥´μ Ô±¸¶¥·¨³¥´É ²Ó´μ [6]. ‚ ·¥§Ê²ÓÉ É¥
Ê£²μ¢Ò¥ Î ¸ÉμÉÒ ¢· Ð¥´¨Ö ¸¶¨´ ¢ ³ £´¨É´μ³ ¶μ²¥, ´ ¶· ¢²¥´´μ³ ¢¥·É¨± ²Ó´μ ¢¢¥·Ì ¨
¢¥·É¨± ²Ó´μ ¢´¨§, · §²¨Î ÕÉ¸Ö ´ ¢¥²¨Î¨´Ê
2ωz = 4πf sin Φ,
f = 1,16 · 10−5 ƒÍ,
£¤¥ f Å Î ¸ÉμÉ ¢· Ð¥´¨Ö ‡¥³²¨; Φ Å £¥μ£· ˨Υ¸± Ö Ï¨·μÉ , μÉ·¨Í É¥²Ó´Ò¥ §´ Î¥´¨Ö Φ ¸μμÉ¢¥É¸É¢ÊÕÉ Õ¦´μ³Ê ¶μ²ÊÏ ·¨Õ. É ¢¥²¨Î¨´ ¤μ¸É ÉμÎ´μ ¢¥²¨± . ’ ±ÊÕ ¦¥
· §´μ¸ÉÓ Î ¸ÉμÉ ¸μ§¤ ¥É „Œ
hf sin Φ
.
deff =
E
Ϩ·μÉ¥ ƒ·¥´μ¡²Ö (”· ´Í¨Ö), ¢ ±μÉμ·μ³ ¶·μ¨§¢μ¤¨²¸Ö Ô±¸¶¥·¨³¥´É [1] (Φ ≈ 45◦ ), ¨ ¢
¶μ¸ÉμÖ´´μ³ Ô²¥±É·¨Î¥¸±μ³ ¶μ²¥ E = 1 Œ‚/³ ¢±² ¤ ¢· Ð¥´¨Ö ‡¥³²¨ ¸μμÉ¢¥É¸É¢Ê¥É „Œ
´¥°É·μ´ 1,6 · 10−24 e · ¸³ ¶·¨ Ô±¸¶¥·¨³¥´É ²Ó´μ° Éμδμ¸É¨ 2,9 · 10−26 e · ¸³.
·¨ ´ ²¨Î¨¨ ¢· Ð¥´¨Ö ¸¶¨´ ¢ Ô²¥±É·μ³ £´¨É´μ³ ¶μ²¥, Ì · ±É¥·¨§Ê¥³μ£μ Ê£²μ¢μ°
¸±μ·μ¸ÉÓÕ Ω, Ê£²μ¢ Ö ¸±μ·μ¸ÉÓ ¢· Ð¥´¨Ö ¸¶¨´ ¢ ¸¨¸É¥³¥ μÉ¸Î¥É , ¸¢Ö§ ´´μ° ¸ ‡¥³²¥°,
· ¢´ (2)
Ω = Ω − ω.
§Ê³¥¥É¸Ö, ʱ § ´´ Ö ¶μ¶· ¢± ´ ¢· Ð¥´¨¥ ‡¥³²¨ ʸɷ ´Ö¥É¸Ö ¶ÊÉ¥³ ¶¥·¨μ¤¨Î¥¸±μ°
¶¥·¥μ·¨¥´É ͨ¨ Ô²¥±É·¨Î¥¸±μ£μ ¶μ²Ö. ¤´ ±μ Í¥´É· ÉÖ¦¥¸É¨ μ¡² ± ʲÓÉ· Ìμ²μ¤´ÒÌ
´¥°É·μ´μ¢ ¢ Ô±¸¶¥·¨³¥´É¥ [1] ²¥¦¨É ´ 0,28 ¸³ ´¨¦¥, Î¥³ ¤²Ö Éμ³μ¢ ·ÉÊɨ. ·¨ ´ ²¨Î¨¨ £· ¤¨¥´É ³ £´¨É´μ£μ ¶μ²Ö ÔÉμÉ Ë ±Éμ· ¶·¨¢μ¤¨É ± ¸¨¸É¥³ ɨΥ¸±μ° μϨ¡±¥ ¨
É·¥¡Ê¥É ¢´¥¸¥´¨Ö ¶μ¶· ¢±¨ [7]. Š ± ¶μ± § ´μ ¢ [8], ¶·¨ ¢ÒΨ¸²¥´¨¨ ¶μ¶· ¢±¨ ´ £· ¤¨¥´É ³ £´¨É´μ£μ ¶μ²Ö ´¥μ¡Ì줨³μ ÊΨÉÒ¢ ÉÓ ¢· Ð¥´¨¥ ‡¥³²¨, ¢±² ¤ ±μÉμ·μ£μ ¢ ¨Éμ£μ¢Ò°
·¥§Ê²ÓÉ É μ± §Ò¢ ¥É¸Ö · ¢´Ò³ (2,57 ± 0,34) · 10−26 e · ¸³ [8]. ‚ ¨Éμ£¥ Ô±¸¶¥·¨³¥´É ²Ó´μ¥ §´ Î¥´¨¥ „Œ ´¥°É·μ´ μ± §Ò¢ ¥É¸Ö μɲ¨Î´Ò³ μÉ ´Ê²Ö ¡μ²ÓÏ¥, Î¥³ ´ ¢¥²¨Î¨´Ê
μ¤´μ£μ ¸É ´¤ ·É´μ£μ μɱ²μ´¥´¨Ö [8]. ‚ · ¡μÉ¥ [8] ÔÉμ μ¡ÑÖ¸´Ö¥É¸Ö ÎÊ¢¸É¢¨É¥²Ó´μ¸ÉÓÕ
Ô±¸¶¥·¨³¥´É ± ±μ··¥²Öֳͨ ¢¨¤ ω · B.
’ ±¨³ μ¡· §μ³, ¢ Ô±¸¶¥·¨³¥´É¥ ¶μ ¶μ¨¸±Ê „Œ ´¥°É·μ´ , ¶·μ¢μ¤¨³μ³ ¸ ʲÓÉ· Ìμ²μ¤´Ò³¨ ´¥°É·μ´ ³¨ ¸É ´¤ ·É´Ò³ ³¥Éμ¤μ³ [1, 2], ¢²¨Ö´¨¥ ¢· Ð¥´¨Ö ‡¥³²¨ ¶·μÖ¢²Ö¥É¸Ö ʦ¥
´ Ê·μ¢´¥ 10−26 e · ¸³, ¶·¨Î¥³ ¨³¥ÕШ¥¸Ö Ô±¸¶¥·¨³¥´É ²Ó´Ò¥ (¨ É¥μ·¥É¨Î¥¸±¨¥) ¤ ´´Ò¥
´¥ ¶μ§¢μ²ÖÕÉ μ¶·¥¤¥²¨ÉÓ ÔÉμ ¢²¨Ö´¨¥ ¸ ¤μ¸É ÉμÎ´μ° Éμδμ¸ÉÓÕ. ɳ¥É¨³, ÎÉμ ¢ Ô±¸¶¥·¨³¥´É Ì ÔÉμ£μ ɨ¶ ¶² ´¨·μ¢ ²μ¸Ó ¤μ¸É¨ÎÓ Éμδμ¸É¨ ´ ¤¢ ¶μ·Ö¤± ¢ÒÏ¥. ‚ ´ ¸ÉμÖÐ¥¥
¢·¥³Ö ¤μ¸É¨¦¥´¨¥ É ±μ° Éμδμ¸É¨ ¶·¥¤¸É ¢²Ö¥É¸Ö ¸ÊÐ¥¸É¢¥´´μ ¡μ²¥¥ ¸²μ¦´μ° § ¤ Î¥°,
Î¥³ ÔÉμ ± § ²μ¸Ó ¤μ ¶μÖ¢²¥´¨Ö · ¡μÉÒ [8]. ɳ¥É¨³, ÎÉμ ¢ ¶·¥¤Ò¤ÊÐ¨Ì Ô±¸¶¥·¨³¥´É Ì,
¶·μ¢μ¤¨³ÒÌ ¶·¨ ¶μ¸ÉμÖ´´μ° μ·¨¥´É ͨ¨ ³ £´¨É´μ£μ ¶μ²Ö [9, 10], μ¸´μ¢´ Ö ¸¨¸É¥³ ɨΥ¸± Ö μϨ¡± ¡Ò² μ¡Ê¸²μ¢²¥´ ¥£μ ˲ʱÉÊ Í¨Ö³¨, ±μÉμ·Ò¥ ¡Ò²μ ´¥¢μ§³μ¦´μ ¤¥±¢ É´μ
±μ³¶¥´¸¨·μ¢ ÉÓ ¸ ¶μ³μÐÓÕ ¢´¥Ï´¥£μ ³ £´¨Éμ³¥É· . ‘Ì¥³ Ô±¸¶¥·¨³¥´É , ·¥ ²¨§μ¢ ´´ Ö
786 ‘¨²¥´±μ . Ÿ.
¢ [1, 2], ¶μ§¢μ²Ö¥É · ¤¨± ²Ó´μ ʳ¥´ÓϨÉÓ ÔÉÊ μϨ¡±Ê ¶ÊÉ¥³ ¢¢¥¤¥´¨Ö ®±μ-³ £´¨Éμ³¥É· ¯,
¢ ± Î¥¸É¢¥ ±μÉμ·μ£μ ¨¸¶μ²Ó§ÊÕÉ¸Ö ¶μ²Ö·¨§μ¢ ´´Ò¥ Éμ³Ò 199 Hg.
§Ê³¥¥É¸Ö, ¢μ§´¨±´μ¢¥´¨¥ ɷʤ´μ¸É¥° ¸ ¶μ²´Ò³ ÊÎ¥Éμ³ ÔËË¥±Éμ¢, μ¡Ê¸²μ¢²¥´´ÒÌ
¢· Ð¥´¨¥³ ‡¥³²¨, ´¥ ʳ ²Ö¥É ¢ ¦´μ¸É¨ ¶·μ¢¥¤¥´¨Ö Ô±¸¶¥·¨³¥´Éμ¢ É¨¶ [1, 2]. ¤´ ±μ
ÔÉμ ¤¥² ¥É ´¥μ¡Ì줨³Ò³ · §¢¨É¨¥ ¨ Ê¸μ¢¥·Ï¥´¸É¢μ¢ ´¨¥ ²ÓÉ¥·´ ɨ¢´ÒÌ ³¥Éμ¤μ¢ ¶μ¨¸± „Œ ´¥°É·μ´ .
¤´¨³ ¨§ ´ ¨¡μ²¥¥ ¶¥·¸¶¥±É¨¢´ÒÌ Ö¢²Ö¥É¸Ö ¤¨Ë· ±Í¨μ´´Ò° ³¥Éμ¤, ±μÉμ·Ò° μ¸´μ¢ ´
´ ¶μ¨¸±¥ ¢· Ð¥´¨Ö ¸¶¨´ , μ¡Ê¸²μ¢²¥´´μ£μ ¢§ ¨³μ¤¥°¸É¢¨¥³ „Œ ´¥°É·μ´ ¸ Ô²¥±É·¨Î¥¸±¨³ ¶μ²¥³ ´¥Í¥´É·μ¸¨³³¥É·¨Î´μ£μ ±·¨¸É ²² [11]. ‚¥²¨Î¨´ ÔÉμ£μ ¶μ²Ö ´ 4Ä5
¶μ·Ö¤±μ¢ ¶·¥¢ÒÏ ¥É ¶μ²Ö, ¤μ¸É¨¦¨³Ò¥ ¢ ² ¡μ· Éμ·´ÒÌ Ê¸²μ¢¨ÖÌ, ¨ ¤μ¸É¨£ ¥É 1010 Ä
1011 ‚/³ [12]. μ¸É ´μ¢± ¤ ´´μ£μ Ô±¸¶¥·¨³¥´É ¶μ§¢μ²Ö¥É É ±¦¥ ¨¸¸²¥¤μ¢ ÉÓ T -´¥Î¥É´Ò¥ ¢§ ¨³μ¤¥°¸É¢¨Ö ´¥°É·μ´ ¸ Ö¤· ³¨, ¶·¨¢μ¤ÖШ¥ ± ´ ²μ£¨Î´μ³Ê ÔËË¥±ÉÊ ¢· Ð¥´¨Ö
¸¶¨´ [13]. ‡´ ± ¨ ¢¥²¨Î¨´ Ô²¥±É·¨Î¥¸±μ£μ ¶μ²Ö, ¤¥°¸É¢ÊÕÐ¥£μ ¢ ±·¨¸É ²²¥ ´ ´¥°É·μ´ ¸ Ô´¥·£¨¥°, ¡²¨§±μ°, ´μ ´¥ · ¢´μ° Ô´¥·£¨¨ ¡·Ô££μ¢¸±μ£μ μÉ· ¦¥´¨Ö, ³μ£ÊÉ ¡ÒÉÓ
¨§³¥´¥´Ò ¡¥§ ¶¥·¥¢μ·μÉ · ¡μÎ¥£μ ±·¨¸É ²² [14], ÎÉμ μ¡²¥£Î ¥É ʸɷ ´¥´¨¥ ¸¨¸É¥³ ɨΥ¸±¨Ì μϨ¡μ± ¨ ¸´¨¦ ¥É É·¥¡μ¢ ´¨Ö ´ μ¸É Éμδҥ ³ £´¨É´Ò¥ ¶μ²Ö ¢ Ê¸É ´μ¢±¥ [15].
Š·μ³¥ Éμ£μ, ¶·¨ ¶·μ¢¥¤¥´¨¨ Ô±¸¶¥·¨³¥´É ¶·¨ Ê£²¥ ¤¨Ë· ±Í¨¨, · ¢´μ³ 90◦ , Ô²¥±É·¨Î¥¸±μ¥ ¶μ²¥ ±·¨¸É ²² ¶ · ²²¥²Ó´μ ¸±μ·μ¸É¨ ´¥°É·μ´ ¨ Ï¢¨´£¥·μ¢¸±μ¥ ¢§ ¨³μ¤¥°¸É¢¨¥,
Ö¢²ÖÕÐ¥¥¸Ö μ¸´μ¢´Ò³ ¨¸Éμδ¨±μ³ ¸¨¸É¥³ ɨΥ¸±¨Ì μϨ¡μ±, · ¢´μ ´Ê²Õ. ‘ÊÐ¥¸É¢¥´´μ,
ÎÉμ É·¥¡μ¢ ´¨Ö ± ¸μ¢¥·Ï¥´¸É¢Ê ¨¸¶μ²Ó§Ê¥³ÒÌ ±·¨¸É ²²μ¢ ´¥ μÎ¥´Ó ¢Ò¸μ±¨ [14].
˜¢¨´£¥·μ¢¸±μ¥ ¢§ ¨³μ¤¥°¸É¢¨¥ μ¡Ê¸²μ¢²¥´μ ¢§ ¨³μ¤¥°¸É¢¨¥³ ³ £´¨É´μ£μ ³μ³¥´É ´¥°É·μ´ ¸ ³ £´¨É´Ò³ ¶μ²¥³, ¢μ§´¨± ÕШ³ ¢ ¥£μ ¸¨¸É¥³¥ ¶μ±μÖ, ¨ ¨³¥¥É ¢¨¤
H=−
2μ
s · [E × v].
c
(3)
‘ÊÐ¥¸É¢μ¢ ´¨¥ Ï¢¨´£¥·μ¢¸±μ£μ ¢§ ¨³μ¤¥°¸É¢¨Ö ¶μ§¢μ²Ö¥É μ¶·¥¤¥²¨ÉÓ ¢¥²¨Î¨´Ê ´ ¶·Ö¦¥´´μ¸É¨ Ô²¥±É·¨Î¥¸±μ£μ ¶μ²Ö (´ ¶·¨³¥·, ¶ÊÉ¥³ ¨§³¥·¥´¨Ö ¤¥¶μ²Ö·¨§ ͨ¨ ´¥°É·μ´´μ£μ
¶Êα [16]). ˆ´É¥·¥¸´μ° μ¸μ¡¥´´μ¸ÉÓÕ Ö¢²Ö¥É¸Ö Éμ, ÎÉμ ¶·¨ ¤¨Ë· ±Í¨¨ ¶μ ‹ ÊÔ ¸ÊÐ¥¸É¢¥´´μ ¢μ§· ¸É ¥É ¢·¥³Ö ¶·¥¡Ò¢ ´¨Ö ´¥°É·μ´ ¢ ±·¨¸É ²²¥, ÎÉμ ¶·¨ Ê£² Ì ¤¨Ë· ±Í¨¨,
¡²¨§±¨Ì ± 90◦ , Ê¢¥²¨Î¨¢ ¥É ¢·¥³Ö ¤¥°¸É¢¨Ö Ô²¥±É·¨Î¥¸±μ£μ ¶μ²Ö. ‚ ¶·μ¢¥¤¥´´ÒÌ ¢ [17]
¨§³¥·¥´¨ÖÌ ¸±μ·μ¸ÉÓ ¶·μÌ즤¥´¨Ö ´¥°É·μ´ Î¥·¥§ ±·¨¸É ²² · ¢´Ö² ¸Ó 40 ³/¸ ¶·¨
¸±μ·μ¸É¨ ´ ²¥É ÕÐ¥£μ ´¥°É·μ´ 800 ³/¸.
·μ¢¥¤¥´´Ò° ¢ [18] ´ ²¨§ ¶μ± § ², ÎÉμ ¤²Ö ʦ¥ ¨³¥ÕÐ¨Ì¸Ö ¸¥°Î ¸ ¢ ´ ²¨Î¨¨ ´¥Í¥´É·μ¸¨³³¥É·¨Î´ÒÌ ±·¨¸É ²²μ¢ ±¢ ·Í ¨ ¶ÊÎ±μ¢ Ìμ²μ¤´ÒÌ ´¥°É·μ´μ¢ ³μ¦´μ ¤μ¸É¨ÎÓ
Éμδμ¸É¨ ¨§³¥·¥´¨Ö „Œ ´¥°É·μ´ ∼ 10−26 e · ¸³, ÎÉμ ¸ÊÐ¥¸É¢¥´´μ ²ÊÎÏ¥, Î¥³ ¸μ¢·¥³¥´´μ¥ μ£· ´¨Î¥´¨¥ ´ „Œ, ¶μ²ÊÎ¥´´μ¥ ¸ ¨¸¶μ²Ó§μ¢ ´¨¥³ ʲÓÉ· Ìμ²μ¤´ÒÌ ´¥°É·μ´μ¢. ˆ¸¶μ²Ó§μ¢ ´¨¥ ´μ¢μ£μ ±² ¸¸ ´¥Í¥´É·μ¸¨³³¥É·¨Î´ÒÌ ±·¨¸É ²²μ¢ ³μ¦¥É ¶·¨¢¥¸É¨
± ¤ ²Ó´¥°Ï¥³Ê ʲÊÎÏ¥´¨Õ Éμδμ¸É¨ ¥Ð¥ ± ± ³¨´¨³Ê³ ´ ¶μ·Ö¤μ± [18]. ’ ±¨³ μ¡· §μ³, ¤¨Ë· ±Í¨μ´´Ò° ³¥Éμ¤ ¶μ Éμδμ¸É¨ ³μ¦¥É ±μ´±Ê·¨·μ¢ ÉÓ ¸ É· ¤¨Í¨μ´´Ò³ ³¥Éμ¤μ³,
¡ §¨·ÊÕШ³¸Ö ´ ¨§³¥·¥´¨¨ Î ¸ÉμÉÒ ² ·³μ·μ¢¸±μ° ¶·¥Í¥¸¸¨¨ ¸¶¨´ ʲÓÉ· Ìμ²μ¤´ÒÌ
´¥°É·μ´μ¢.
…¸É¥¸É¢¥´´μ, ¡μ²ÓÏ Ö ¢¥²¨Î¨´ ´ ¶·Ö¦¥´´μ¸É¨ Ô²¥±É·¨Î¥¸±μ£μ ¶μ²Ö ¢ ¤¨Ë· ±Í¨μ´´μ³ Ô±¸¶¥·¨³¥´É¥ [18] ¶·¨¢μ¤¨É ± · ¤¨± ²Ó´μ³Ê ʳ¥´ÓÏ¥´¨Õ ·μ²¨ ¢· Ð¥´¨Ö ‡¥³²¨
¶μ ¸· ¢´¥´¨Õ ¸ Ô±¸¶¥·¨³¥´É ³¨ ¸ ʲÓÉ· Ìμ²μ¤´Ò³¨ ´¥°É·μ´ ³¨. Ϩ·μÉ¥ ‘ ´±É¥É¥·¡Ê·£ , £¤¥ ¶·μ¨§¢μ¤¨É¸Ö ¤¨Ë· ±Í¨μ´´Ò° Ô±¸¶¥·¨³¥´É (Φ ≈ 60◦ ), ¨ ¤²Ö ¨§³¥·¥´´μ£μ ¢ [16] ¶μ²Ö ¶²μ¸±μ¸É¨ (110) ±·¨¸É ²² ±¢ ·Í (E = (2,24 ± 0,05(0,20)) · 1010 ‚/³)
“봃 ¢· Ð¥´¨Ö ‡¥³²¨ ¢ Ô±¸¶¥·¨³¥´É Ì ¶μ ¶μ¨¸±Ê „Œ ´¥°É·μ´ 787
¶μ¶· ¢± ´ ¢· Ð¥´¨¥ ‡¥³²¨ ¸μμÉ¢¥É¸É¢Ê¥É „Œ 2 · 10−28 e · ¸³. ·¨ ¶μ¨¸±¥ „Œ ´ Ê·μ¢´¥ 10−26 e · ¸³ ÔÉ ¶μ¶· ¢± Ö¢²Ö¥É¸Ö ¶·¥´¥¡·¥¦¨³μ ³ ²μ°. ¤´ ±μ ¶·¨ §´ Ψɥ²Ó´μ³ Ê¢¥²¨Î¥´¨¨ Éμδμ¸É¨, ¢¶²μÉÓ ¤μ 10−28 e · ¸³, ¶μ¶· ¢± ´ ¢· Ð¥´¨¥ ‡¥³²¨ ¤μ²¦´ ¡ÒÉÓ ÊÎÉ¥´ . ‚ ¸μμÉ¢¥É¸É¢¨¨ ¸ μÍ¥´±μ°, ¸¤¥² ´´μ° ¢ [18], ¤μ¸É¨¦¥´¨¥ É ±μ° Éμδμ¸É¨ ¢
¶·¨´Í¨¶¥ Ö¢²Ö¥É¸Ö ¢μ§³μ¦´Ò³. ¤´ ±μ ¨ ¢ ÔÉμ³ ¸²ÊÎ ¥ ʱ § ´´ Ö ¶μ¶· ¢± ²¥£±μ ³μ¦¥É
¡ÒÉÓ ÊÎÉ¥´ ¸ ¶μ³μÐÓÕ Ëμ·³Ê²Ò (2).
’ ±¨³ μ¡· §μ³, ¸· ¢´¨É¥²Ó´Ò° ´ ²¨§, ¶·μ¢¥¤¥´´Ò° ¢ ´ ¸ÉμÖÐ¥° · ¡μÉ¥ ¸ ¨¸¶μ²Ó§μ¢ ´¨¥³ ¶μ²ÊÎ¥´´ÒÌ ¢ [8] ·¥§Ê²ÓÉ Éμ¢, ¶μ± §Ò¢ ¥É, ÎÉμ ¤²Ö ¤μ¸É¨£´ÊÉμ° Éμδμ¸É¨ ¨§³¥·¥´¨Ö „Œ ´¥°É·μ´ (∼ 10−26 e · ¸³) ¢ ¤¨Ë· ±Í¨μ´´μ³ Ô±¸¶¥·¨³¥´É¥ Ê봃 ¢· Ð¥´¨Ö
‡¥³²¨ ¤ ¥É ¶·¥´¥¡·¥¦¨³μ ³ ²ÊÕ (¨ ÉμÎ´μ · ¸¸Î¨ÉÒ¢ ¥³ÊÕ) ¶μ¶· ¢±Ê, ¢ Éμ ¢·¥³Ö ± ±
¢ Ô±¸¶¥·¨³¥´É Ì ¸ ʲÓÉ· Ìμ²μ¤´Ò³¨ ´¥°É·μ´ ³¨ ÔÉ ¶μ¶· ¢± ¶·¥¢ÒÏ ¥É ¸¨¸É¥³ ɨΥ¸±ÊÕ ¶μ£·¥Ï´μ¸ÉÓ, ¶·¨Î¥³ ¥¥ ÉμδҰ · ¸Î¥É É·¥¡Ê¥É ¤μ¶μ²´¨É¥²Ó´ÒÌ ¨¸¸²¥¤μ¢ ´¨°.
μ¨¸± „Œ ´¥°É·μ´ Ö¢²Ö¥É¸Ö ¢ ¦´μ° Î ¸ÉÓÕ ¨¸¸²¥¤μ¢ ´¨Ö ËÊ´¤ ³¥´É ²Ó´ÒÌ ¢§ ¨³μ¤¥°¸É¢¨°, ¨ ¶μÔÉμ³Ê ´¥μ¡Ì줨³μ · §¢¨¢ ÉÓ Ô±¸¶¥·¨³¥´É ²Ó´Ò¥ ¨¸¸²¥¤μ¢ ´¨Ö ´ ¡ §¥
¢¸¥Ì ¸ÊÐ¥¸É¢ÊÕÐ¨Ì ±μ´±Ê·¥´Éμ¸¶μ¸μ¡´ÒÌ ³¥Éμ¤μ¢. ‚ ¸¢Ö§¨ ¸ Ôɨ³ ¤ ²Ó´¥°Ï¥¥ · §¢¨É¨¥ ¤¨Ë· ±Í¨μ´´μ£μ ³¥Éμ¤ ¨§³¥·¥´¨Ö „Œ ´¥°É·μ´ ¤μ²¦´μ ¢ §´ Ψɥ²Ó´μ° ¸É¥¶¥´¨
¸¶μ¸μ¡¸É¢μ¢ ÉÓ ¶·μ£·¥¸¸Ê ¢ ÔÉμ° μ¡² ¸É¨.
¢Éμ· ¢Ò· ¦ ¥É ¡² £μ¤ ·´μ¸ÉÓ ‚. ƒ. ·ÒÏ¥¢¸±μ³Ê, ‚. ‚. ‚μ·μ´¨´Ê ¨ ‘. ‹. —¥·± ¸Ê § ¸¤¥² ´´Ò¥ § ³¥Î ´¨Ö ¨ μ¡¸Ê¦¤¥´¨¥ ·¥§Ê²ÓÉ Éμ¢.
¡μÉ ¢Ò¶μ²´¥´ ¶·¨ ˨´ ´¸μ¢μ° ¶μ¤¤¥·¦±¥ ””ˆ (£· ´É ”06-074).
‘ˆ‘Š ‹ˆ’…’“›
1. Baker C. A. et al. An Improved Experimental Limit on the Electric Dipole Moment of the Neutron //
Phys. Rev. Lett. 2006. V. 97, No. 13. P. 131801.
2. Harris P. G. et al. New Experimental Limit on the Electric Dipole Moment of the Neutron // Phys.
Rev. Lett. 1999. V. 82, No. 5. P. 90Ä907.
3. Mashhoon B. Neutron Interferometry in a Rotating Frame of Reference // Phys. Rev. Lett. 1988.
V. 61, No. 23. P. 263Ä2642.
4. Bini D., Cherubini C., Mashhoon B. Spin, Acceleration and Gravity // Class. Quant. Grav. 2004.
V. 21, No. 16. P. 3893Ä3908.
5. Mashhoon B. et al. Observable Frequency Shifts via Spin-Rotation Coupling // Phys. Lett. A. 1998.
V. 249, No. 3. P. 161Ä166.
6. Venema B. J. et al. Search for a Coupling of the Earth's Gravitational Field to Nuclear Spins in
Atomic Mercury // Phys. Rev. Lett. 1992. V. 68, No. 2. P. 13Ä138.
7. Pendlebury J. M. et al. Geometric-Phase-Induced False Electric Dipole Moment Signals for Particles
in Traps // Phys. Rev. A. 2004. V. 70, No. 3. P. 032102.
8. Lamoreaux S. K., Golub R. Comment on ®An Improved Experimental Limit on the Electric-Dipole
Moment of the Neutron¯. hep-ex/0609055. 2 p.
9. Smith K. F. et al. A Search for the Electric Dipole Moment of the Neutron // Phys. Lett. B. 1990.
V. 234, No. 1Ä2. P. 191Ä196.
788 ‘¨²¥´±μ . Ÿ.
10. Altarev I. S. et al. Search for the Neutron Electric Dipole Moment // Phys. At. Nucl. 1996. V. 59,
No. 7. P. 1152Ä1170.
11. Fedorov V. V., Voronin V. V., Lapin E. G. On the Search for Neutron EDM Using Laue Diffraction
by a Crystal without a Center of Symmetry // J. Phys. G: Nucl. Part. Phys. 1992. V. 18, No. 7.
P. 1133Ä1148.
12. ²¥±¸¥¥¢ ‚. ‹. ¨ ¤·. ˆ§³¥·¥´¨¥ ¸¨²Ó´μ£μ Ô²¥±É·¨Î¥¸±μ£μ ¢´ÊÉ·¨±·¨¸É ²²¨Î¥¸±μ£μ ¶μ²Ö ¢ Ï¢¨´£¥·μ¢¸±μ³ ¢§ ¨³μ¤¥°¸É¢¨¨ ¤¨Ë· £¨·ÊÕÐ¨Ì ´¥°É·μ´μ¢ // †’”. 1989. ’. 96. ‘. 1921Ä1926.
13. Baryshevsky V. G. T-Violating Neutron Spin Rotation and Spin Dichroism in Crystals // J. Phys. G:
Nucl. Part. Phys. 1997. V. 23, No. 5. P. 509Ä515.
14. Fedorov V. V. et al. Redoubled Effect of a Neutron Spin Rotation in Deformed Noncentrosymmetric
Crystal for the Bragg Diffraction Scheme // ¨¸Ó³ ¢ †’”. 2004. ’. 80, ¢Ò¶. 9. ‘. 675Ä679.
15. Fedorov V. V. et al. Neutron Spin Optics in Noncentrosymmetric Crystals as a New Way for nEDM
Search // Nucl. Instr. Meth. B. 2006. V. 252, No. 1. P. 131Ä135.
16. ‚μ·μ´¨´ ‚. ‚. ¨ ¤·. ¡´ ·Ê¦¥´¨¥ ÔËË¥±É ¤¥¶μ²Ö·¨§ ͨ¨ ´¥°É·μ´´μ£μ ¶Êα ¶·¨ ¤¨Ë· ±Í¨¨
¶μ ‹ ÊÔ ¢ ´¥Í¥´É·μ¸¨³³¥É·¨Î´μ³ ±·¨¸É ²²¥ // ¨¸Ó³ ¢ †’”. 2000. ’. 72, ¢Ò¶. 6. ‘. 445Ä450.
17. ‚μ·μ´¨´ ‚. ‚. ¨ ¤·. ·Ö³μ¥ ¨§³¥·¥´¨¥ ¢·¥³¥´¨ § ¤¥·¦±¨ ´¥°É·μ´ ¢ ±·¨¸É ²²¥ ¶·¨ ¤¨Ë· ±Í¨¨
¶μ ‹ ÊÔ // ’ ³ ¦¥. ’. 71, ¢Ò¶. 2. ‘. 110Ä115.
18. Voronin V. V., Fedorov V. V. Neutron Diffraction and Optics of a Noncentrosymmetric Crystal. New
Feasibility of a Search for Neutron EDM // Frontiers in Condensed Matter Physics Research. N. Y.,
2006. P. 13Ä39; hep-ex/0504042. 34 p.
μ²ÊÎ¥´μ 20 ´μÖ¡·Ö 2006 £.
Скачать