Функциональная асимметрия мозга: что изменилось в наших

advertisement
Функциональная асимметрия мозга:
что изменилось в наших знаниях
за 30 лет?
Татьяна Черниговская
Санкт-Петербургский
государственный университет
Ю.Лотман, Б.Успенский. Миф—имя—культура
• Мир есть материя. Мир есть конь.
• Одна из этих фраз принадлежит тексту заведомо мифологическому
(“Упанишады”), между тем как другая может служить примером текста
противоположного типа. При внешнем формальном сходстве данных
конструкций между ними имеется принципиальная разница:
• а) одинаковая связка (есть) обозначает здесь совершенно различные в
логическом смысле операции: в первом случае речь идет об определенном
соотнесении (которое может приниматься, например, как соотнесение
частного с общим, включение во множество и т. п.), во втором —
непосредственно об отождествлении;
• б) предикат также различен. С позиции современного сознания слова
материя и конь в приведенных конструкциях принадлежат различным
уровням логического описания: первое тяготеет к уровню метаязыка, а второе
— к уровню языка-объекта. В первом случае существенно принципиальное
отсутствие изоморфизма между описываемым миром и системой описания;
во втором случае, напротив, — принципиальное признание такого
изоморфизма. Второй тип описания мы будем называть “мифологическим”,
первый — “немифологическим” (или “дескриптивным”).
Юрий Михайлович Лотман
Параллель между
двуполушарной
структурой
человеческого мозга и
культурой,
биполярность как
минимальная
структура
семиотической
организации...на всех
уровнях мыслящего
механизма
Л. С. Выготский
• Перерастание
диалога «между
разными людьми»
в диалог «внутри
одного мозга».
М. М. Бахтин
• Событие жизни
текста, т. е. его
подлинная сущность,
всегда развивается
на рубеже двух
сознаний ...
Диалогические
рубежи пересекают
все поле живого
человеческого
мышления
Вяч. Вс. Иванов
• Процессы обмена
информацией внутри
мозга и внутри
общества... - разные
стороны единого
процесса.
В. С. Библер
• Процесс
внутреннего
диалогизма–
столкновение
радикально
различных логик
мышления
Мераб Мамардашвили
• Пока нет языка, ничего
о мире сказать нельзя,
а когда он есть – то
это необратимо:
многие вещи
определяются нами в
возможностях именно
этого, а не другого
языка. Иначе говоря,
сначала, когда нет
языка, мы ничего не
можем сказать, а когда
язык есть, сказать
можем не всё.
Мераб Мамардашвили
Значит, мы как бы подвешены в
языке...Эта подвешенность, чётко
удерживаемая и сознаваемая граница
выразимого и невыразимого и есть
ноуменальная часть человеческого
мышления... Точность и красота
мышления Канта и Декарта состоит в
том, что они чётко выдерживали такое
понимание
Густав Шпет
• Слова – не
свивальники мысли,
а её плоть. Мысль
рождается в слове
и вместе с ним.
Даже и этого мало
– мысль зачинается
в слове
Вопросы:
• Есть ли основания говорить о генетической
основе языковой способности человека?
• Имеет ли латерализация мозговых функций
решающее значение для формирования
языка человека и когниции высокого ранга?
T. Deacon : Язык – поразит, оккупировавший
мозг!
•Bickerton: «у нас не было большего и лучшего
мозга, который дал нам язык; мы приобрели
язык, и он позволил нам увеличить и улучшить
наш мозг» [Бикертон 2012: 35].
•Эпигенез…. (Шмальгаузен,Deacon)
•
По независимым оценкам разных групп
исследователей, что показал анализ
митохондриальной
ДНК,
временем
появления Homo sapiens как биологического
вида следует считать период около 185
тысяч лет назад. Около 60–70 тысяч лет
назад, ещё до выхода из Африки эта
популяция разделилась по крайней мере на
три
подгруппы,
давшие
начало
африканской,
монголоидной
и
европеоидной рассам [Cavalli-Sforza, 2000;
Rosser et al., 2000].
Cопоставимые
результаты дают и исследования Ухромосомы, хотя и указывают на более
поздние сроки — 140–175 тысяч лет назад
[Thomson et al., 2000].
• T. Crow argues that language and psychosis
have a common evolutionary origin. Language
originated in a critical change (the `speciation
event'--the genetic change on the sex X and Y
chromosomes that defined the species) to
determine the plateau of brain development
that led to a progressive delay in maturation
and an increase in communicative capacity. It
occurred in East Africa between 100 and 250
thousand years ago and allowed the two
hemispheres to develop with a degree of
independence and subserve the generativity of
language.
• Krause et al. (Current Biology, 2007, 17: 19081912 ) claim that two Neanderthals from the El
Sidrón site in Spain had the same FOXP2
mutations as modern humans do, which led
these researches to conclude that "these two
amino acid substitutions [...] associated with
the emergence of fully modern language
ability... were probably inherited both by
Neanderthals and modern Sapiens from their
last common ancestor (300,000 to 400,000
years B.P.)"
Выделен ген, который претерпел наиболее
значительные изменения на пути к
современному человеку. Это HAR1, в
котором содержалось 118 (!) различий
между человеком и шимпанзе. Для
сравнения, между шимпанзе и птицами
расхождений всего 2.
Асимметрия чего? Когнитивная?
Вегетативная? Моторная?
Left brain subserves specific
features of human language
‘Digital’ and hierarchical structure
(phonemes - morphemes - words -phrases
- discourse)
Productivity governed by the linguistic
rules
Differences in the superficial order of
constituents
Left brain subserves specific
features of human language
The use of null elements (e.g. ‘it’, ‘there’)
The use of sub-categorical argument
structure for verbs
Mechanisms for expansion of utterances
Embedding
The Left hemisphere introduces an object
into generalized classes of phenomena and
provides for logical operations and
categorical perception
The Right Brain is responsible for
Global/Gestalt recognition.
Revealing the relevant components of a
situation (or a scene).
Relatively high speed of decision making
Classification of colours and odours
Orientation in space and time
Evaluation of gestures, face expressions and
verbal prosody
Genetic associations....
• Fisher, S.E., Vargha-Khadem, F., Watkins. K.E.,
Monaco, A.P., and Pembey, M.E. Localisation of
a Gene Implicated in a Severe Speech and
Language Disorder, Nature Genet., 1998, vol. 18,
pp. 168-170.
• Crow, T.J. Schizophrenia as the Price that Homo
sapience Pays for Language: A Resolution of the
Central Paradox in the Origin of the Species,
Brain Res. Rev., 2000, vol. 31, pp. 118-129
• Andrew, S. Communicating a New Gene Vital for
Speech and Language, Clin. Genet., 2000, vol.
61, pp. 97-100.
FoxP2 regulates excitatory
synapse density
through SRPX2
Previous studies
have suggested that
FoxP2 may regulate
neurite growth
dendritic morphology,
and synaptic
physiology of basal
ganglia neurons
• FoxP2 представляет собой транскрипционный
фактор, контролирующий работу многих генов
и экспрессирующийся в разных органах тела
человека. Одним из генов, находящихся под
контролем FoxP2, является ген CNTNAP2,
нарушения в работе участков которого
связывают с аутизмом. Некоторые варианты
этого гена у детей с аутизмом влияют на
возраст, в котором произносится первое
слово. Кроме того он не специфичен только
для человека, а функционируют и в других
организмах, включая дрозофил и крыс.
•
Итак:
Экспрессия гена FoxP2 у человека
связывается с процессом последовательного
обучения,
который
определяется
как
способность людей вычленять и обрабатывать
дискретные
компоненты
в
организованных
временных
последовательностях.
определяется
как
сложно
Это
ключевое
деятельности человека.
умение
в
языковой
•
Развитие эволюционной генетики
позволило сделать целый ряд очень
важных открытий,
в том числе
обнаружить ген FoxP2, идентичный
функционирующему
в
современном
человеке, у неандертальцев и денисовцах,
что
стало
одним
из
косвенных
доказательств того, что синтаксис мог быть
уже у нашего общего с неандертальцами
предка.
• But the form in chimpanzees is slightly
different. The gene provides instructions for a
protein of the same name that varies by just
two amino acids - proteins' building blocks from the chimpanzees' version.
• . But among those 116 genes ‘tied’ to the
human FOXP2 gene there is at least one "that
is involved in the development of brain regions
that are part of a critical circuit we know is
important for higher cognition“ (Geschwind).
•
Нарушение в FOXB1 приводит к дизгенезу
медиальных маммилярных тел
в области
среднего мозга (их роль в процессах памяти такая
же, как у гиппокампа, и они обеспечивают
рабочую память). Мыши с нарушением этого гена
обнаруживают дизгенез маммилярных тел и
нарушение памяти (Анохинская "корсаковская
мышь" ). У таких мышей нормальная
долговременная
память
и
нарушенная
оперативная память.
•
Т.е. FOXB1 обеспечивает оперативную
память и работу гиппокампа в когнитивных
задачах, что вполне может влиять на обеспечение
таких сложных функций у человека как языковые
процессы.
•
SCIENCE:22 NOVEMBER 2013 Vol. 342
G. M. Sia, R. L. Clem, R. L. Huganir. The
Human Language–Associated Gene SRPX2
Regulates Synapse Formation and Vocalization in
Mice
•
Expression of this protein is known to be
repressed by the transcription factor FOXP2,
which has been implicated in human language
acquisition.
SCIENCE:22 NOVEMBER 2013 Vol. 342
• Philip Lieberman. Synapses, Language, and Being Human.
•
We do not yet know the full range of genetic events
that yielded the human brain, but a mutation at a site near
the FOXP2 amino acid mutations that are unique to humans
appears to be responsible for a “selective sweep” that
occurred about 200,000 years ago in Africa. Such sweeps on
genes occur when they enhance the survival of progeny. A
process in which FOXP2 targets the SRPX2 gene to control
the release of a protein that promotes the development of
synapses would clearly play a role in that aspect of the
evolution of the human brain.
•
Synapse formation in the developing brain depends
on the coordinated activity of synaptogenic proteins,
some of which have been implicated in a number of
neurodevelopmental disorders. The sushi repeat–
containing protein X-linked 2 (SRPX2) gene encodes a
protein that promotes synaptogenesis in the cerebral
cortex. In humans, SRPX2 is an epilepsy- and languageassociated gene that is a target of the foxhead box
protein P2 (FoxP2) transcription factor. FoxP2
modulates synapse formation through regulating
SRPX2 levels and that SRPX2 reduction impairs
development of ultrasonic vocalization in mice. The
results suggest FoxP2 modulates the development of
neural circuits through regulating synaptogenesis and
that SRPX2 is a synaptogenic factor that plays a role in
the pathogenesis of language disorders.
Stephen J. Gottsa, Hang Joon Job, Gregory L. Wallacea, Ziad
S. Saadb, Robert W. Coxb, and Alex Martina. Two distinct
forms of functional lateralization in the human brain.
//
PNAS
July
25,
2013
The hemispheric lateralization of certain faculties in the human
brain has long been held to be beneficial for functioning. However,
quantitative relationships between the degree of lateralization in
particular brain regions and the level of functioning have yet to
be established. Here we demonstrate that two distinct forms of
functional lateralization are present in the left vs. the right cerebral
hemisphere, with the left hemisphere showing a preference to
interact more exclusively with itself, particularly for cortical regions
involved in language and fine motor coordination. In contrast, righthemisphere
cortical regions involved in visuospatial and attentional
processing interact in a more integrative fashion with both hemispheres.
The degree of lateralization present in these distinct
systems selectively predicted behavioral measures of verbal and
visuospatial ability, providing direct evidence that lateralization is
associated with enhanced cognitive ability.
Neuropsychological and neuroimaging studies have
revealed a strong bias toward left hemisphere
representation of language and fine motor control of the
hands, with a well-documented association between
handedness and language lateralization that is most
pronounced in right-handed males .
In contrast, visuospatial attentional abilities are
represented more strongly in the right hemisphere, with
right-sided brain damage being more likely to produce
hemi-spatial attentional neglect .
Although the mechanisms underlying functional
lateralization are unknown, theoretical proposals have
appealed to the computational benefits of functional
specialization, with distinct functions and a division
of labor between the hemispheres that improves overall
cognitive ability and performance.
A basic distinction that derives from the separate literatures
on language, motor, and visuospatial lateralization
is that the hemispheres differ qualitatively in their within- and
between-hemisphere interactions.
Left hemisphere representations of language and fine motor
control have been proposed to be more “focal,” permitting
rapid cortical interactions with shorter conduction delays,
whereas right-lateralized visuospatial attention mechanisms
requirea greater degree of interhemispheric integration due
to the bilateral representation of visual space.
Nevertheless, the proposed preferences of each hemisphere
for unilateral vs. bilateral interaction and how such
preferences relate quantitatively to particular cognitive
abilities have yet to be examined.
!!! The data on cerebral lateralization are broadly
consistent with computational theories of functional
specialization that hold that information processing
is more effective and efficient when larger functions
can be decomposed into smaller independent
processes, reducingfunctional interference.
Hemispheric lateralization can be thought of as a
special case of functional specialization, but other
cases, such as the division of labor in the visual
system between space and form or category
selectivity in occipitotemporal brain regions , may
ultimately be found to follow similar considerations.
• Poeppel D (2003) The analysis of speech in
different temporal integration windows: Cerebral
lateralization as ‘asymmetric sampling in time’.
Speech Commun 41(1):245–255.
• Hickok G, Poeppel D (2007) The cortical
organization of speech processing. Nat Rev.
Neurosci 8(5):393–402
• Rosch RE, Bishop DV, Badcock NA (2012)
Lateralised visual attention is unrelated to
language lateralisation, and not influenced by task
difficulty - a functional transcranial Doppler study.
Neuropsychologia 50(5):810–815.
• Fox MD, et al. (2005) The human brain is
intrinsically organized into dynamic,
anticorrelated functional networks. Proc Natl
Acad Sci USA 102(27):9673–9678.
• Chernigovskaya, Slussar, Medvedev, Kireev (2012-2013):
• The generation of regular and irregular past tense verbs has
long been a testing ground for different models of
inflection in the mental lexicon. According to the dualsystem view, regular forms are generated by a rule and
irregular forms are retrieved from memory. The singlesystem view postulates a single integrated system for all
forms. Behavioral studies examined a variety of languages,
but neuroimaging studies still rely almost exclusively on
English and German data. We used Russian, a language
with a much more complex verb class system. To avoid
problems identified in earlier studies, we randomly mixed
different tasks (inflecting nonce and real verbs and nouns
of different types) and compiled large sets of stimuli
matched for frequency and phonological complexity. Unlike
most previously obtained results, our findings are more
readily compatible with the single-system approach.
Observed activation patterns are best explained by the
difference in processing load between experimental tasks.
A) brain areas involved in irregular verb production (IV>RV); B) brain areas involved in nonce
irregular verb production (INV>RNV); C) brain areas responding to the increase in processing
difficulty (RV<IV<RNV<INV). fMRI data are projected onto a reference anatomical image.
BA, approximate Brodmann’s area; L/R, left/right hemisphere; IFG, inferior frontal gyrus; IPL,
inferior parietal lobule; SFG, superior frontal gyrus; SMA, supplementary motor area.

The cortex is a network – no modules or blocks




So, the cortical representation of language is a network
The cortical representation of knowledge in general is a
network
The representation of memory is a network
Language uses the same cortical structures and processes
as other cognitive skills
 Except for phonetics, which has specialization



We know a lot about neurons as units
We are starting to know how they work
together, we can even see it.
Functional blocks, no modules, some
localization and spread activity
Prosody: Chernigovskaya, Strelnikov et al.
• Syntactic processing of spoken speech often involves
evaluation of prosodic clues. In the present PET and ERP
study, subjects listened to phrases in which different
prosodic segmentation dramatically changed the meaning
of the phrase. In the contrast of segmented vs. nonsegmented phrases, PET data revealed activation in the
right dorsolateral prefrontal cortex and in the right
cerebellum. These brain structures, therefore, might be
part of the syntactic analysis network involved in
prosodic segmentation and pitch processing. ERP results
revealed frontal negativity that was sensitive to the
position of the segmenting pause, possibly reflecting
prosody-based semantic prediction. The present results
are discussed in the context of their relation to brain
networks of emotions, prosody, and syntax perception.
• The neuroanatomical basis of syntactic parsing is
believed to include the left perisylvian associative
cortex, with possible contribution of the homologous
contralateral cortex, as suggested by brain lesion
studies (Grodzinsky, 1990; 1995; Berndt et al., 1996;
Caplan et al., 1996). Broca’s area seems to be the most
frequently mentioned candidate for the key brain
structure of syntactic analysis (Swinney et al., 1995;
1996). The activation level of Broca’s area correlated
with syntactic complexity in some PET studies for both
visual (Just et al., 1996; Stromswold et al., 1996) and
auditory (Caplan et al., 1998; 1999) sentence
presentation.
• Areas adjacent to Broca’s were shown to subserve
syntactic errors detection (Indefrey et al., 2001;
Friederici et al., 2003). In numerous studies, the
processing of syntactic structures was also associated
with some ERP components--e.g., P600 and the socalled left anterior negativity (LAN), which has its
maximum above Broca’s area (e.g., Neville et al., 1991;
Kluender and Kutas, 1993). The nature of these ERP
components is being actively discussed (e. g., Friederici,
2002; Ullman, 2004).
• However, the regions in the right hemisphere,
homologous to Broca’s and Wernicke’s areas, were also
implicated during syntactic processing (Just et al., 1996).
Humphries et al. (2001) found bilateral activations in the
anterior temporal cortex during speech sounds, as opposed
to non-speech sounds. In their PET study, Mazoyer et al.
(1993) showed that the bilateral anterior temporal cortex
was the only structure specifically activated by listening to
sentences, whereas Broca’s area was activated also by
separate words. Friederici et al. (2000) also showed that
syntactic processing of speech bilaterally influenced
anterior temporal cortex activation. Thus, syntactic
processing seems to be subserved by the crosshemispheric neural networks.
• According to Homae et al. (2002), activation in the left
inferior frontal gyrus during sentence processing does not
depend on sensory modality. Natural language perception
and oral speech syntax are based primarily on the auditory
modality--in particular, on such prosodic features as
changes in pace, tone, and loudness (Shattuck-Hufnagel
and Turk, 1996). Further understanding of oral speech
processing requires an investigation of its prosodic
mediation (Friederici, 2002). Studies of prosodic
processing have suggested the involvement of either the
right hemisphere or both hemispheres (Baum and Pell,
1999; Meyer et al., 2002; Kotz et al., 2003; Meyer et al.,
2004), whereas modality-independent syntactic
processing is usually associated with the left hemisphere
(e. g., Chernigovskaya and Deglin, 1986; Caplan et al.,
1998; Caplan et al., 1999; Indefrey et al., 2001; Röder et
al., 2002).
• However, an interaction between the structural
conditions and prosodic conditions was observed
bilaterally in the anterior temporal lobe along the
superior temporal gyrus (Humphries et al., 2005). ERP
studies have revealed some commonalities in prosody
and syntax processing: the same electrophysiological
phenomenon accompanied the processing of prosodic
boundaries in spoken speech and the processing of
commas during silent reading (Steinhauer et al., 1999;
Steinhauer, 2003). Generally, though the direct
interaction of prosody and syntax is proved, the existing
data do not allow judgment on the specific brain
mechanisms of the prosody/syntax interface - an
intriguing question for further neurolinguistic studies.
Activation areas obtained when the segmented phrases were
actively analyzed (rCBF increase in the "Segmented" condition
vs. the "Non-segmented" condition). The right prefrontal and
cerebellar activations are shown as projections to the right and
posterior brain surfaces, respectively.
Areas of rCBF increase in the "Non-segmented" condition as
compared to the "Segmented" condition. The white line on the
rendered right hemisphere surface depicts the level of the horizontal
slice. L and R indicate the left and right sides
• The ERP study involved presentation of four phrases in
which the place of the pause and the corresponding
comma in writing dramatically changed the meaning:
• To chop not, to saw. ( “Рубить нельзя, пилить.”)
• To chop, not to saw. (“Рубить, нельзя, пилить.”)
• To saw not, to chop. (“Нельзя пилить, рубить.”)
• To saw, not to chop. (“Пилить, нельзя рубить.”).
• These four phrases were selected from 60 presented in
the PET study.
• The observed right cerebellar activation might be
related to the perception of speech timing. Indeed, the
cerebellum is often believed to be a key structure for
timing estimation, which is important for many sensory,
motor, and cognitive activities (Ackermann et al., 1999;
Ivry and Richardson, 2002; Salman, 2002). It is also
possible that the right cerebellar activation is related to
estimating phonetic and semantic borders of syntagms,
or to keeping the phrase structure in the working
memory during processing (Marien, 2001).
• The right posterior prefrontal cortex and the right
medial posterior cerebellar area participate in the
brain network of spoken speech syntactic parsing,
being involved in the prosody/syntax interface. The
acquired ERP data support the idea that prosodybased semantic prediction is important for such
processing. Furthermore, comparing our results with
other brain mapping studies, we conclude that the
right posterior prefrontal cortex might represent the
functional overlap of brain networks of emotions,
prosody, and syntax perception.
Peak values and anatomic locations of the PET activations.
Brodmann areas, and stereotactic coordinates. Abbreviations: L = the
left hemisphere; R = the right hemisphere; Inf. = inferior; Mid =
middle.
• Brain region, Brodmann Area
• “Segmented” vs. “Non-segmented”
• R. Mid. Frontal Gyrus / Inf. Frontal Sulcus, BA
9/46/44
• R. Cerebellum
• “Non-segmented” vs. “Segmented”
• L. Sylvian Sulcus, BA 42/40/13
• L. Heschl Gyrus BA 41/42
• R. Heschl Gyrus, BA 41
R. L. Moseley, F. Pulvermu¨ller & Yu. Shtyrov. Sensorimotor
semantics on the spot:brain activity dissociates between
conceptual categories within 150 ms. SCIENTIFIC REPORTSJune,2013
Although semantic processing has traditionally been associated with
brain responses maximal at 350–400 ms, recent studies reported that
words of different semantic types elicit topographically distinct brain
responses substantially earlier, at 100–200 ms. These earlier responses
have, however, been achieved using insufficiently precise source
localisation techniques, therefore casting doubt on reported differences
in brain generators. Reliable neurophysiological word-category
dissociations emerged bilaterally at 150 ms, at which point actionrelated words most strongly activated frontocentral motor areas and
visual object-words occipitotemporal cortex. These data now show
that different cortical areas are activated rapidly by words with
different meanings and that aspects of their category-specific
semantics is reflected by dissociating neurophysiological sources in
As can be seen, brain activation exhibited its absolute maximum between 140–160
ms, Note that activity predominates in occipitotemporal areas, as words were
presented visually, and is present in widespread cortical areas at this early latency.
AD Friederici. The Brain Basis of Language Processing:
From Structure to Function.Physiol Rev 2011 91: 1357–1392
Networks involving the temporal cortex and the inferior frontal cortex
with a clear left lateralization were shown to support syntactic
processes, whereas less lateralized temporo-frontal networks subserve
semantic processes. These networks have been substantiated both by
functional as well as by structural connectivity data.
Electrophysiological measures indicate that within these networks
syntactic processes of local structure building precede the assignment
of grammatical and semantic relations in a sentence. Suprasegmental
prosodic information overtly available in the acoustic language input is
processed predominantly in a temporo-frontal network in the right
hemisphere. Studies with patients suffering from lesions in the corpus
callosum reveal that the posterior portion of this structure plays a
crucial role in the interaction of syntactic and prosodic information
during language processing.
We suggest that a given area,for example,
Broca’s area, receives its particular
domainspecific function as part of a particular
domain-specific network which, for the
language domain, involves the posterior STG
and which, for the action domain, involves
the parietal cortex. Thus the function of an
area should always be considered within a
neural network of which it is a part.
Thank you !
Download