Портфельные инвестиции – это вложения средств в ценные

реклама
!" 51-7
.!. "#$#%&'#, (.). *+,-./0#
!"#$%&' ()*&+(),-(.' &$$,!/+0)1!,-$%&' 2+,&1!3(&4!$%&' 5(&0!"$&1!1,
!"#-, 6+$$&7
12"3456 7*8 9"*:(5 5
7;5< " "5 ! 9)=)>
*7(5<59)455 5"! :(545*""*?* 7*;(1 86
6)$$#)1"&0)!1$7 2+/3+/ % 8+"#&"+0)(&9 +21&#),-(+:+ 2+"18!,7 &(0!$1&*&', +$(+0)((.' () 85(%*&& 2+,!;(+$1&. "& <1+# 85(%*&7 54&1.0)!1 +1(+=!(&! &(0!$1+") % "&$%5. 6)$$#)1"&0)!1$7 1"& +$(+0(.3 1&2) 85(%*&' 2+,!;(+$1& &(0!$1+") 0 ;)0&$&#+$1& +1 &3 +1(+=!(&7
% "&$%5: 85(%*&7 2+,!;(+$1& /,7 +$1+"+>(+:+ &(0!$1+"), /,7 "&$%+0)((+:+ & (!'1"),-(+ +1(+$7?!:+$7 % "&$%5 &(0!$1+"). +$1"+!(()7 #+/!,- 8+"#&"+0)(&7 &(0!$1&*&+((+:+ 2+"18!,7
2"+0!"7!1$7 () )/!%0)1(+$1- & 2"&#!(&#+$1- () 2")%1&%! /,7 &(0!$1&"+0)(&7.
3@A-,'B, +@&'#: 2+"18!,-(.! &(0!$1&*&&, 85(%*&7 2+,!;(+$1&, +>&/)!#)7 /+3+/(+$1-, "&$%, /+3+/(+$1-.
E.V. Nazarova, T.A. Osechkina
Perm National Research Politechnic University, Perm, Russia
THE UTILITY FUNCTION AND ITS APPROACH
TO THE FORMATION OF AN OPTIMAL PORTFOLIO
This article discusses an approach to the formation of an optimal portfolio based on the utility
function. The function takes into account the investor's attitude to risk. We consider three basic types of
utility functions depending on the investor's attitude to risk: the utility function for the cautious investor,
for risk neutral and risk-related. The constructed model of the investment portfolio is checked for adequacy and applicability in practice for investment.
Keywords: portfolio investment, utility function, expected return, risk, profitability.
#$%&'()*+,( -+.(/&-0-- – 1&$ .)$2(+-3 /%(4/&. . 0(++,( 56789- %8:)-;+,< =$7>8+-? 4)3 >$)6;(+-3 >%-5,)-. #$%&'()*+,( -+.(/&-0-- >%(4/&8.)3@& /$5$? >8//-.+$( .)84(+-( 0(++,7- 5678987%8:)-;+,< =$7>8+-?, =$&$%,( - '$%7-%6@& >$%&'()* -+.(/&$%8.
A($%(&-;(/=- >$%&'()* 7$2(& /$/&$3&* -: 56789 $4+$9$ .-48,
8 &8=2( 7(+3&* /.$@ /&%6=&6%6 >6&(7 :87(B(+-3 $4+-< 56789 4%69-7-. C4+8=$ =82483 0(++83 567898 . $&4()*+$/&- +( 7$2(& 4$/&-98&*
>$4$5+$9$ %(:6)*&8&8.
125
#$%&'()*+$( -+.(/&-%$.8+-( 3.)3(&/3 $4+-7 -: +8-5$)(( 1''(=&-.+,< .-4$. -+.(/&-%$.8+-3 +8 '-+8+/$.$7 %,+=(. D//)(4$.8+-@
>$%&'()*+,< -+.(/&-0-? >$/.3B(+, 7+$9-( /$.%(7(++,( 1=$+$7-;(/=-( -//)(4$.8+-3, +8>%-7(% [1], [2], [3]. #$4<$4 = '$%7-%$.8+-@ $>&-78)*+,< >$%&'()(? 6 8.&$%$. %8:)-;(+. #(%(4 +87- /&$3)8 :848;8 >$/&%$-&* +$.6@ 7$4()* $>&-7-:80-- /&%6=&6%, -+.(/&-0-$++$9$ >$%&'()3 - /%8.+-&* %(:6)*&8&, (9$ '$%7-%$.8+-3 / 4%69-7- 7$4()37-, 8 &8=2(
$>%(4()-&* /&(>(+* >%-7(+-7$/&- >$)6;(++$? 7$4()-.
D+.(/&$% :8-+&(%(/$.8+ . 5(:$>8/+$/&- .)$2(+-? /.$(9$ =8>-&8)8. #$4 5(:$>8/+$/&*@ .)$2(+-? >$+-78(&/3 +(63:.-7$/&* -+.(/&-0-? $& %8:)-;+,< >$&%3/(+-? +8 '$+4$.$7 %,+=(, /&85-)*+$/&* >$)6;(+-3 4$<$48 - )-=.-4+$/&*. E(:$>8/+$/&* ./(948 4$/&-98(&/3 . 6B(%5
4$<$4+$/&- - %$/&6 .)$2(+-?.
F-/= – 1&$ /&$-7$/&+$( .,%82(+-( .(%$3&+$/&+$9$ /$5,&-3, .(46B(9$ = >$&(%37.
")8//-;(/=$? 7$4()*@ '$%7-%$.8+-3 >$%&'()3 0(++,< 56789
3.)3(&/3 7$4()* 87(%-=8+/=$9$ 1=$+$7-/&8 G8%=$.-08. H 1952 9. $+
$>65)-=$.8) %85$&6 «H,5$% -+.(/&-0-$++$9$ >$%&'()3» [4], =$&$%83
)(9)8 . $/+$.6 &($%-- -+.(/&-0-$++$9$ >$%&'()3.
C/+$.+,( >$)$2(+-3 7$4()- G8%=$.-08:
1. F,+$= /$/&$-& -: =$+(;+$9$ ;-/)8 8=&-.$., 4$<$4+$/&- =$&$%,< 4)3 :848++$9$ >(%-$48 3.)3@&/3 /)6;8?+,7- .()-;-+87-.
2. D+.(/&$% . /$/&$3+-- >$)6;-&* $0(+=6 $2-48(7,< 4$<$4+$/&(? - /&(>(+(? .$:7$2+$/&(? 4-.(%/-'-=80-- %-/=8.
3. D+.(/&$% 7$2(& '$%7-%$.8&* )@5,( 4$>6/&-7,( 4)3 48++$?
7$4()- >$%&'()-.
4. I%8.+(+-( .,5-%8(7,< >$%&'()(? $/+$.,.8(&/3 &$)*=$ +8
4.6< =%-&(%-3< – /%(4+(? 4$<$4+$/&- - %-/=(.
D+.(/&$% +( /=)$+(+ = %-/=6 . &$7 /7,/)(, ;&$ -: 4.6< >$%&'()(? / $4-+8=$.$? 4$<$4+$/&*@ $+ >%(4>$;&(& >$%&'()*
/ +8-7(+*J-7 %-/=$7.
"824,? -+.(/&$% 2()8(& &8=-7 $5%8:$7 /'$%7-%$.8&* >$%&'()*,
;&$5, /$;(&8+-( $2-48(7$? 4$<$4+$/&- - 6%$.+3 %-/=8 >$%&'()3
$5(/>(;-.8)$ 5, 78=/-78)*+$( 64$.)(&.$%(+-( >$&%(5+$/&(? - 7-+-7-:-%$.8)$ %-/= >%- 2()8(7$? 4$<$4+$/&-. F8:+,( -+.(/&$%, -7(@&
$&)-;+,( 4%69 $& 4%698 7+(+-3 $5 $>&-78)*+$/&- /$;(&8+-3 4$<$4+$/&- - %-/=8, &8= =8= $&+$J(+-( $4+$9$ -+.(/&$%8 = %-/=6 +( >$<$2( +8
126
2()8+-( 4%69$9$ -+.(/&$%8 %-/=$.8&*. #$1&$76, 9$.$%3 $5 $>&-78)*+$7 >$%&'()(, +84$ -7(&* . .-46, ;&$ 1&8 =8&(9$%-3 /6965$ -+4-.-468)*+8 - $>&-78)*+,( >$%&'()- %8:+,< -+.(/&$%$. &($%(&-;(/=- $&)-;8@&/3 4%69 $& 4%698.
#%(4>$;&(+-3 =$+=%(&+$9$ -+.(/&$%8, (9$ >%(4/&8.)(+-3 $ +8-)6;J(7 /$;(&8+-- 7(246 $2-48(7$? 4$<$4+$/&*@ - %-/=$7 >$%&'()3
>$:.$)3(& '$%78)-:$.8&* !"#$%& '()*+"(,-% %".*,-(/0 [5].
H.(4(7 $5$:+8;(+-3: >6/&* (X1, ..., Xn) – '-=/-%$.8++,? /)6;8?+,? .(=&$%, m = (m1, ..., mn) – .(=&$% (9$ /%(4+-< :+8;(+-?, 8 V = (vij) –
=$.8%-80-$++83 78&%-08, &.(.
mi = EXi, vij = E(Xi K mi)(Xj K mj), i, j = 1, ..., n.
#6/&*, 48)((, y = (y1, ..., yn) – .(=&$% -:
Ln = {y
Rn| y1 + ... + yn = 1}.
#$%&'()(7 +8:,.8(&/3 /)6;8?+83 .()-;-+8
P = P(y) = y1X1 + ... + ynXn,
>%- 1&$7 =$7>$+(+&, .(=&$%8 y >%-+3&$ +8:,.8&* .(/87- -+/&%67(+&$. Xi, i =1, ..., n . >$%&'()(. G8&(78&-;(/=$( $2-48+-( - 4-/>(%/-3
>$%&'()3:
EP
N
N
""v
y1m1 ! ... ! yn mn , DP
ij
yi y j
yT Vy.
i 1 j 1
L848;8 '$%7-%$.8+-3 >$%&'()3 :8=)@;8(&/3 . .,5$%( .(/$. y
+8-)6;J-7 . +(=$&$%$7 /7,/)( $5%8:$7.
#6/&* U: R
R – +(65,.8@B83 '6+=0-3 >$)(:+$/&-. I (( >$7$B*@ 7$2+$ :848&* /)(46@B6@ 7(%6 %-/=8:
M(X) = EU(X),
=$&$%83 +8:,.8(&/3 $2-48(7$? >$)(:+$/&*@ %-/=8 X.
C2-48(783 >$)(:+$/&* >$%&'()3 -7((& .-4
g(y) = EU(P) = EU (y1X1 + ... + ynXn).
F8//78&%-.8(7 :848;6 $>&-7-:80-- >$%&'()3:
g ( y ) # max,
y
y $ Ln .
127
!)3 '6+=0-- >$)(:+$/&- U %8//78&%-.8@&/3 /)(46@B-( <8%8=&(%-/&-=-:
1. N(>%-3&-( %-/=8 <8%8=&(%-:6(& .&$%83 >%$-:.$4+83 '6+=0->$)(:+$/&- U %%( x ) : 6 -+.(/&$%8, 6=)$+3@B(9$/3 $& %-/=8, U %%( x) $&%-08&()*+8, 6 -+.(/&$%8, /=)$++$9$ = %-/=6, – >$)$2-&()*+8, 6 +(?&%8)*+$9$ = %-/=6 – %8.+8 +6)@.
2. D:7(+(+-( /&(>(+- +(>%-3&-3 %-/=8 -+.(/&$%8 >%- -:7(+(+-=8>-&8)8 <8%8=&(%-:6(& =$1''-0-(+& A( x ) : (/)- A%( x ) & 0 – .$:%8/&8@B(( 85/$)@&+$( +(>%-3&-( %-/=8, A%( x ) 0 <8%8=&(%-:6(& >$/&$3++$( 85/$)@&+$( +(>%-3&-( %-/=8, >$+-2(+-( 85/$)@&+$9$ +(>%-3&-3 %-/=8 – A%( x ) ' 0 .
3. D:7(+(+-( 4$)- /%(4/&., -+.(/&-%$.8++,< . %-/=$.8++,( 8=&-.,, / -:7(+(+-(7 =8>-&8)8, $&+$/-&()*+83 .()-;-+8 +(%8/>$)$2(++$/&- = %-/=6 <8%8=&(%-:6(&/3 '6+=0-(? $&+$/-&()*+$9$ +(>%-3&-3
%-/=8 R ( x ) : >%- R%( x ) & 0 >%$-/<$4-& .$:%8/&8+-( $&+$/-&()*+$9$ +(>%-3&-3 %-/=8, R%( x ) 0 – >$/&$3+/&.$ $&+$/-&()*+$9$ +(>%-3&-3 %-/=8, R%( x ) ' 0 – >$+-2(+-( $&+$/-&()*+$9$ +(>%-3&-3 %-/=8.
H :8.-/-7$/&- $& >%-.(4(++,< <8%8=&(%-/&-= %8//7$&%-7 &%$/+$.+,< .-48 '6+=0-- >$)(:+$/&- (%-/. 1).
!)3 $/&$%$2+$9$ -+.(/&$%8, 4)3 =$&$%$9$ ;(7 5$)*J( /%(4/&.
-7((&/3 . %8/>$%32(+--, &(7 7(+*J( $+ :8-+&(%(/$.8+ . 6.()-;(+--< $5O(78 >6&(7 4$>$)+-&()*+$9$ -+.(/&-%$.8+-3, .$:*7(7 .,>6=)6@
'6+=0-@ >$)(:+$/&-:
U1 ( x ) 1 ( e ( ax ,))a & 0.
!)3 %-/=$.8++$9$ -+.(/&$%8, -)- -+.(/&$%8, /=)$++$9$ = %-/=6,
>$)(:+$/&* 4$>$)+-&()*+$? (4-+-0, >%-5,)- 6.()-;-.8(&/3 / %$/&$7
>%-5,)-, -/>$)*:6(7 .$9+6&6@ '6+=0-@ >$)(:+$/&-:
U 2 ( x)
e ax ( 1,))a & 0.
D +8=$+(0, 4)3 -+.(/&$%8, 5(:%8:)-;+$9$ = %-/=6, – )-+(?+6@
'6+=0-@ >$)(:+$/&-:
U 3 ( x) ax ! b,))a & 0.
128
!
"
#
F-/. 1. P%8'-=- '6+=0-? >$)(:+$/&-: ! – 4)3 $/&$%$2+$9$ -+.(/&$%8;
" – 4)3 %-/=$.8++$9$; # – 4)3 +(?&%8)*+$9$ = %-/=6
#6/&* /$.7(/&+$( %8/>%(4()(+-( .(=&$%8 -+/&%67(+&$. X = (X1,
..., Xn) 3.)3(&/3 +$%78)*+,7. A$948 %8/>%(4()(+-( >$%&'()3 P(y) &8=2(
3.)3(&/3 +$%78)*+,7 / >8%87(&%87- v = yTm - Q2 = yTV y - >)$&+$/&*@
f ( x)
* ( x ( v)2 +
1
exp , (
-.
2
.
2
2/.
0
1
F8//7$&%-7 1&8>, .,;-/)(+-3 +8 >%-7(%( $/&$%$2+$9$ -+.(/&$%8 (4)3 $/&8.J-</3 -+.(/&$%$. %8/;(& 8+8)$9-;(+).
C2-48(783 >$)(:+$/&* 7$2(& 5,&* .,;-/)(+8 3.+$.
2
EU1 ( P( y ))
2
3 U ( x) f ( x)dx 3 (1 ( exp((ax)) f ( x)dx
1
(2
(2
2
* ( x ( v) 2 +
1
1(
3 exp((ax)exp,1 ( 2.2 -0dx.
2/. (2
#$/=$)*=6 >$4,+&(9%8)*+$( .,%82(+-( -7((& .-4
* ( x ( (v ( a. 2 ) 2 +
*1 2 2
+
exp , (
- exp , a . ( av - ,
2
2.
12
0
0
1
>$)6;8(7 $2-48(76@ >$)(:+$/&* /)(46@B(9$ .-48:
129
2
* ( x ( (v ( a.2 )) 2 +
1
*1 2 2
+
EU1 ( P( y )) 1 (
exp , a . ( av - 3 exp , (
-dx
2.2
2/.
12
0 (2
0
1
*1
+
*1
+
1 ( exp , a 2.2 ( av - 1 ( exp , a 2 yTVy ( ayT m -.
12
0
12
0
C&/@48 .-4+$, ;&$ 78=/-7-:80-3 EU1(P(y)) 1=.-.8)(+&+8 7-+-7-:80-- '6+=0-g1 ( y )
1 2 T
a y Vy ( ayT m,)) y $ Ln .
2
!)3 %-/=$.8++$9$ - +(?&%8)*+$9$ = %-/=6 -+.(/&$%8 >$)6;8(7
/$$&.(&/&.(++$ /)(46@B-( '6+=0-$+8),:
g2 ( y)
1 2 T
a y Vy ! ayT m # max,)) y $ Ln ,
2
g3 ( y )
y T m # max,)) y $ Ln .
A85)-08 1
C2-48(783 4$<$4+$/&* - 4-/>(%/-3
"$7>8+-3
I5(%58+=
P8:>%$7
HAE
RSI
T "CUT
N$%+-=()*
F$/+('&*
I(.(%/&8)*
I6%96&+('&(98:
m, %
0,31
0,12
0,25
0,29
0,12
0,26
0,14
0,19
0,17
. 2 ,)4
0,13
0,06
0,11
0,20
0,06
0,11
0,07
0,04
0,06
!)3 >%$.(%=- >%-7(+(+-3 7$4()- 4)3 $>&-7-:80-- -+.(/&-0-$++,< >$%&'()(? 5,)- .,4()(+, =%6>+(?J-( =$7>8+--, $=8:,.8@B-( +8-5$)*J(( .)-3+-( +8 /$/&$3+-( %,+=8 . 0()$7 - .=)@;8(7,( . -+4(=/ FAI. N8 $/+$.( 48++,< $ &$%98< :8 2009 - 2010 99.
[6] 5,)8 %8//;-&8+8 $2-48(783 4$<$4+$/&* - 4-/>(%/-3 (&85). 1),
8 &8=2( 78&%-08 =$.8%-80-?, >%(4/&8.)(++83 +-2(.
130
0,001300
0,000680
0,000096
0,000161
0,000450
–0,000132
0,000763
0,000310
0,000556
0,000680
0,000600
0,000016
0,000175
0,000306
–0,000130
0,000518
0,000211
0,000414
0,000096
0,000016
0,001100
0,000074
–0,000187
–0,000055
–0,000035
–0,000086
–0,000073
0,000161
0,000175
0,000074
0,002000
0,000022
–0,000193
0,000071
0,000224
0,000153
0,000450
0,000306
–0,000187
0,000022
0,000600
–0,000114
0,000305
0,000230
0,000174
–0,000132
–0,000130
–0,000055
–0,000193
–0,000114
0,001100
–0,000079
0,000099
–0,000057
0,000763
0,000518
–0,000035
0,000071
0,000305
–0,000079
0,000700
0,000201
0,000350
0,000310
0,000211
–0,000086
0,000224
0,000230
0,000099
0,000201
0,000400
0,000137
0,000556
0,000414
–0,000073
0,000153
0,000174
–0,000057
0,000350
0,000137
0,000600
H <$4( %(J(+-3 >$/&8.)(++$? :848;- >%(4)$2(++,7 7(&$4$7
5,)- +8?4(+, >$%&'()- 0(++,< 56789 (&85). 2).
A85)-08 2
F(:6)*&8&, '$%7-%$.8+-3 >$%&'()(?
"$7>8+-3
I5(%58+=
P8:>%$7
HAE
RSI
T "CUT
N$%+-=()*
F$/+('&*
I(.(%/&8)*
I6%96&+('&(98:
!CVC!NCIAW
C/&$%$2+,? -+.(/&$%
0,51235141
0
0
0,217191719
0
0,254014682
0
0
0
0,014758926
F-/=$.8++,?
-+.(/&$%
0
0
0
1
0
0
0
0
0
–0,037500001
N(?&%8)*+,?
= %-/=6 -+.(/&$%
1
0
0
0
0
0
0
0
0
0,047337278
$%&'()!*&(: 4$<$4+$/&- /$$&.(&/&.6@B-< >$%&'()(? 5,)- %8//;-&8+, :8
>(%.,( 4.8 7(/308 2011 9.
A8=-7 $5%8:$7, 4$<$4+$/&* >$/)(4+(9$ -: >$%&'()(?, .,;-/)(++,< >$ >%(4)$2(++$? 4)3 +(?&%8)*+$9$ = %-/=6 -+.(/&$%8 7$4()-,
$=8:8)8/* >$)$2-&()*+$?, - $+8 .,J(, ;(7 4)3 $/&$%$2+$9$ -+.(/&$%8. H &$ 2( .%(73 %(:6)*&8& 4$<$4+$/&- 4)3 .&$%$9$ >$%&'()3 $&%-08&()*+,?. G$2+$ /4()8&* .,.$4, ;&$ %-/=$.8++,? -+.(/&$% +(84(=.8&+$ $0(+-.8(& /-&680-@ +8 '-+8+/$.$7 %-/=(, ;&$ >%-.$4-& = &$76, ;&$
%(:6)*&8&$7 (9$ .)$2(+-3 . >$%&'()* -+.(/&-0-? 3.)3@&/3 4(+(2+,(
>$&(%- . 3,75 % $& .)$2(++$? 4(+(2+$? /677,.
F(8)*+83 /-&680-3 +8 %,+=( &8=$.8, ;&$ 4(?/&.-&()*+$ +(?&%8)*+,< = %-/=6 -+.(/&$%$. +(&. X8B( ./(9$ -+.(/&$%, /&8%8@&/3
131
=8= 7$2+$ 5$)*J( /+-:-&* %-/=, >%- 1&$7 &(%33 ;8/&* 4$<$4+$/&-.
#$1&$76 48)(( . +8J(7 -//)(4$.8+-- 564(7 %8//78&%-.8&* ./( 2(
$/&$%$2+$ $&+$/3B(9$/3 = %-/=6 -+.(/&$%8, >%- 1&$7 .8%*-%63 >$=8:8&()* +(>%-3&-3 %-/=8 - $&/)(2-.83 /.3:* 7(246 +-7 - >$=8:8&()(7 4$<$4+$/&-.
F-/. 2. P%8'-= 4$<$4+$/&- >$%&'()3 -+.(/&-0-? . :8.-/-7$/&$& =$1''-0-(+&8 '6+=0-- >$)(:+$/&- !
I%8.+-7 >$)6;(++,( %(:6)*&8&, 4$<$4+$/&- / %(:6)*&8&87- %8/;(&$. >$ 7$4()37 $>&-7-:80-- /&%6=&6%, >$%&'()3, $/+$.8++,7 +8
78=/-7-:80-- 844-&-.+$9$ =%-&(%-3 =8;(/&.8 [7], +8 $/+$.( $>&-7-:80-- =$1''-0-(+&8 .8%-85()*+$/&- [8], +8 $/+$.( .(%$3&+$/&+$? 7$4()- [1] (&85). 3).
A85)-08 3
F(:6)*&8&, '$%7-%$.8+-3 >$%&'()(?
%8:)-;+,7- 78&(78&-;(/=-7- 7(&$487G$4()*
G$4()*
G$4()*
$2-48(Y44-&-.+,? "$1''-0-- H(%$3&+$- $2-48(7$? $2-48(7$?
7$? >$(+& .8%-8- /&+83 7$- >$)(:+$/&- >$)(:+$/&"$7>8+-3 =%-&(%-?
)(:+$/&=8;(/&.8
5()*+$/&4()*
/ =$1'.
/ =$1'.
/ =$1'.
a = 0,5
a = 0,2
a = 0,7
I5(%58+=
0
0
0,232827
0,9534
0,7058
0,5988
P8:>%$7
0
0
0
0
0
0
HAE
0,202
0,13965618 0,307243
0
0
0
RSI
0,048
0,00192101
0
0,0466
0,222
0,2215
T "CUT
0,245
0,13536371 0,139096
0
0
0
N$%+-=()*
0,177
0,09760164
0
0
0,0722
0,2215
F$/+('&*
0,002
0
0
0
0
0
132
C=$+;8+-( &85). 3
G$4()*
G$4()*
G$4()*
$2-48(Y44-&-.+,? "$1''-0-- H(%$3&+$- $2-48(7$? $2-48(7$?
7$? >$(+& .8%-8- /&+83 7$- >$)(:+$/&- >$)(:+$/&"$7>8+-3 =%-&(%-?
)(:+$/&=8;(/&.8
5()*+$/&4()*
/ =$1'.
/ =$1'.
/ =$1'.
a = 0,2
a = 0,5
a = 0,7
I(.(%/&8)*
0,152
0,45280537 0,319933
0
0
0
I6%96+('0,173
0,17265209
0
0
0
0
&(98:
!CVC!0,018872718 –0,0018371 0,0152183
0,0434
0,0247
0,0189
NCIAW
!$<$4+$/&- >$%&'()(?, %8//;-&8++,< >$ >%(4)$2(++$? . %85$&(
7$4()-, 4)3 $/&$%$2+$9$ -+.(/&$%8 >%- :+8;(+-3< =$1''-0-(+&8 ! -:
>%$7(26&=8 $& 0 4$ 1 .,J( (%-/. 2), ;(7 %(:6)*&8&, 4$<$4+$/&(? 48++,< &%(< 7(&$4-=, /)(4$.8&()*+$, 4()8(7 .,.$4, ;&$ +8J8 7$4()* 4)3
1&-< :+8;(+-? +(>%-3&-3 %-/=8 84(=.8&+8 - 7$2(& 5,&* -/>$)*:$.8+8
+8 %,+=( 4)3 '$%7-%$.8+-3 4$<$4+$9$ >$%&'()3.
H,;-/)(+-3 +8 $/+$.( %(&%$/>(=&-.+,< 48++,< >$=8:8)- 84(=.8&+$/&* >%(4)$2(++$? 7$4()-, ;&$ >$:.$)3(& /4()8&* .,.$4 $ &$7, ;&$ $+8
7$2(& 5,&* -/>$)*:$.8+8 -+.(/&$%$7 >%- -+.(/&-%$.8+-- - 6>%8.)(+->$%&'()(7 0(++,< 56789 4)3 >$)6;(+-3 >%-5,)-.
1%2)%(3/0 %4*,#%5 ,'%,(#
1. T6=8J-+ Z.#. C>&-7-:80-3 /&%6=&6%, >$%&'()3 0(++,< 56789 // S=$+$7-=8 - 78&(78&-;(/=-( 7(&$4,. – 1995. – A. 31, .,>. 1. –
I. 138–150.
2. A-+3=$.8 H.D., F8&6J+83 R.Y. F8/J-%(++,? 8+8)-: -+.(/&-0-$++,< .$:7$2+$/&(? >%- '$%7-%$.8+-- >$%&'()3 0(++,< 56789 //
I$.%(7(++83 1=$+$7-=8: >%$5)(7, - %(J(+-3. – 2010. – H,>. 5. –
I. 143–152.
3. N-=$+$.-; N.N. G$4()-%$.8+-( - $>&-7-:80-3 >$%&'()*+,<
-+.(/&-0-? . /&$<8/&-;(/=-< +(/&80-$+8%+,< 6/)$.-3< // D+/&%67(+&8)*+,( 7(&$4, 1=$+$7-=-. – 2010. – [ 3.
4. Markowitz H. Portfolio selection // Journal of Finance. – 1952. –
March. – P. 77–91.
5. Markowitz H. Mean – Variance Analysis in Portfolio Choice and
CapitalMarkets. – Cambridge, Massachusetts: Blackwell, 1990.
6. \-+87, 1=/>$%& =$&-%$.$=. – URL: http://www.finam.ru/analysis/export/default.asp.
133
7. T$6)- !., G8=/.()) Y. \8=&$%+,? 8+8)-: =8= /&8&-/&-;(/=-?
7(&$4. – G.: G-%, 1967.
8. T$&$. Y.H., #$/>()$.8 D.D. G+$9$=%-&(%-8)*+,( :848;- >%-+3&-3 %(J(+-?. – G.: GY"I #%(//, 2008. – 197/.
9. ]()$58(. I.D. G8&(78&-;(/=-( 7(&$4, - 7$4()- . 1=$+$7-=(,
'-+8+/8<, 5-:+(/(. – G.: ZNDAD-!YNY, 2001. – 367 /.
References
1. Lukashin Ju.P. Optimizacija struktury portfelja cennyh bumag [The
structure optimization of a portfolio of securities]. Jekonomika i matematicheskie metody, 1995, vol. 31, no. 1, pp. 138–150.
2. Tinyakova V.I., Ratushnaya E.A. Rasshirennyj analiz investicionnyh vozmozhnostej pri formirovanii portfelja cennyh bumag [Expanded
analysis of investment potential along with securities portfolio formation].
Sovremennaja jekonomika: problemy i reshenija, 2010, no. 5, pp. 143–152.
3. Nikonovich N.N. Modelirovanie i optimizacija portfel'nyh investicij
v stohasticheskih nestacionarnyh uslovijah [Modeling and optimization of
portfolio investments in stochastic non-stationary conditions]. Instrumental'nye metody jekonomiki, 2010, no. 3, available at: http://www.uecs.ru/
uecs-23-232010/item/197-2011-03-23-11-48-50.
4. Markowitz H. Portfolio selection. Journal of Finance, 1952, March,
pp. 77–91.
5. Markowitz H. Mean – Variance Analysis in Portfolio Choice and
CapitalMarkets. Cambridge, Massachusetts: Blackwell, 1990.
6. Finam, jeksport kotirovok, available at: http://www.finam.ru/analysis/export/default.asp.
7. Lawley D., Maxwell A. Factor analysis as a statistical method.
Moscow: Mir, 1967, 141 p.
8. Lotov A.V., Pospelova I.I. Mnogokriterial'nye zadachi prinjatija
reshenij [Multicriterion problems of decision-making]. Moscow: MAKS
Press, 2008, 197 %.
9. Shelobaev S.I. Matematicheskie metody i modeli v jekonomike, finansah, biznese [Mathematical methods and models in economy, finance,
business]. Moscow: JuNITI-DANA, 2001, 367 p.
#$)6;(+$ 28.09.2012
134
6.*7*"%& ! "#$ %"&
'"("% #" )*+," -*"./0/% #," ( !"#$, %&''()) – '*+,!-*./
./0!,"1 2"(.3/,-&4 #/*!#/*(.( !"#'.&5& -/6(&-/3$-&5& (''3!,&7/*!3$'.&5& 2&3(*!8-(9!'.&5& +-(7!"'(*!*/ (614990, 5. !"#$, :&#'&#&3$'.(4 2"., ,. 29, e-mail: [email protected]).
12+34/," 5"$67," 8*+42++#," ( !"#$, %&''()) – ./-,(,/* 0(;(.&-#/*!#/*(9!'.(8 -/+., ,&6!-* ./0!,"1 2"(.3/,-&4 #/*!#/*(.(
!"#'.&5& -/6(&-/3$-&5& (''3!,&7/*!3$'.&5& 2&3(*!8-(9!'.&5& +-(7!"'(*!*/ (614990, 5. !"#$, :&#'&#&3$'.(4 2"., ,. 29, e-mail: [email protected]).
About the authors
Nazarova Elena Vladimirovna (Perm, Russia) – student, Department of
Applied Mathematics, Perm National Research Politechnic University
(29, Komsomolsky av., Perm, 614990, Russia, e-mail: [email protected]).
Osechkina Tatyana Alekseevna (Perm, Russia) – Ph.D. of Physical and Mathematic Sciences, Associate Professor, Department of Applied Mathematics, Perm National Research Polytechnic University (29, Komsomolsky av., Perm, 614990, Russia, e-mail: [email protected]).
135
Скачать