549.221 . . V.A. Zhilyaev , . Institute of Solid State Chemistry Ural Branch of RAS, Yekaterinburg , . I. INTERRELATION OF COMPOSITION, STRUCTURE AND CHEMICAL PROPERTIES OF REFRACTORY INTERSTITUAL PHASES. PART I. REGULARITIES OF REACTIONS OF REFRACTORY INTERSTITIAL PHASES WITH SOLID REAGENTS ( V , ( )– . ( IV, V , , MeC–MeN–MeO , , ). , - . , , . . : – NaCl) IV, - , – – , . The interrelation of composition, structure and chemical properties cubic (type NaCl) refractory interstitial phases (RIP) – carbides, nitrides and monoxides transitive metals IV, V groups is investigated. Regularities of reactions of RIP with various solid reagents (transitional metals of IV, V groups, their oxides, carbon) are discussed. It is established that chemical activity of RIP components is function their thermodynamic activity. It is shown that chemical activity of RIP components is function their thermodynamic activity. It is noted that regularities of change of the RIP chemical activity in the field of their homogeneity and in the rank MeC–MeN–MeO are in good agreement with the solid solution nature of these phases. Keywords: refractory interstitial phases, composition – structure – chemical property, solid-solid type reactions, regularities. 7 [1] ( ( IV, V )– NaCl) , . , ( ) , , - , - , , . . Me–Me- , - , . , - , Me–X – - . , , ( , ) , , , - , , , . [2]. « » , , . ( ). , . - IV, V VIII , ), . 1. : – – ? – ? , 8 , ( 2. 3. , , , - ? - . . ( – ) →, . , -2,0 Stadi P), JCXA-733). – ( ( ( - Thermoflex), - . IV, V , , - , - . . (d = 1…3 ), 20 / , , . , . 200 / 5- . . / , . , , (1) (2), .1 - ( 2). ( ) 4,469 Å . 4,68 Å NbC0,97 + Zr s NbC0,97–x + ZrC~0,6, (1) 4,68 Å * C + Zr s ZrC~0,6. ZrC0,97 + Nb s ZrC0,97–x + Nb2C, (2) * C + Nb s Nb2C. 9 ( (3)–(6)), : 4,165 Å 4,31 Å 4,326 Å 4,31 Å VC0,87 + Ti s VC0,87–x + TiC~0,6, (3) TiC0,96 + Ti s TiC0,96–x + TiC~0,6, (4) * C + Ti s TiC~0,6. TiC0,96 + V s TiC0,96–x + V2C, (5) VC0,87 + V s VC0,87–x + V2C, (6) * C + V s V2C. . 1. – 10 NbC0,97 + Zr: (750 ° , 3×5 – ; ) . 2. ZrC0,97 + Nb: – (920 ° , 2×5 ) – ; . , - , IV, V - ( ). , (T ≥ 0,5 (T ≈ 0,3 ), , ) [3, 4]. , ( ., , [5, 6]), , , ( . ), . . , - [7], 11 , , . , ). ( , IV , , V – - Me2C. . , . . [8, 9] ( - - ). , MeC~1,0 , . . . - [10–13]. , IV,V . 3. TiC, TiN 12 ( TiO Me–X- , - . 3–6). . 4. VC, VN VO . 5. . –124 . 6. TiC, TiN TiO , / VC, VN VO , . TiC, TiN TiO [14], NaCl (–98 / , Me–X- –46, –81 - [15]). Me–X- , . ( , ., - [16–20]) , , V, Me–X- . VC–VN–VO (Ti, V) , Me–X- . MeC–MeN–MeO, Me = Ti . 3–6 . , (Zr) , , . : Me–X- . TiC–TiN–TiO , Me–X- ( , - [15]), , Me–X- , - . 13 , . Me–X- , Me–Me- . Me3d- J. Yamashita [21]) , – ( , , , Me–Me- Me–X- MeC–MeN–MeO, . . - . - . VIII MeCx–Ni. , . 50–63 20, 50 1150 ° ) .7 , , 80 % 5–100 . - « MeCx+80%Ni. MeCx (xs1)–Ni 0,9 % , . – , ( 8 », . , . 0,4 . - . MeCx (xs1)–Ni , , - . IV, V ( , VIII ) , . ( 14 ( . (MeCx IV, V VIII , x s 1), ), ). . 7. TiCx + Ni . 8. x , VCx + Ni [10–13]. ( , ( VCx . - . . - . - ). , , - ZrCx) – NbCx + Ni MeCx – ZrCx + Ni ( (7)–(9)): 15 TiC0,96 + NiO s TiC0,96–x + COr + Ni, (7) TiC0,80 + NiO s TiO2 + COr + Ni, (8) TiC0,52 + NiO s Ti2O3 + C + Ni. (9) , , ( , , ), – ( - ). , . (8), . , - , ( ) . , , [22]. - . , , , - , , . , TiC0,96 TiC0,96 + TiO1,03. , , Ti2O3 . Ti2O3 (1100 °C, 5 – ( . 9). 1,08 2/ ) , TiO1,03 - ), ( 100 °C) . 16 1–5 . (10)–(13). 0,77 , (1200–1700 °C). ( - . 9. TiC0,96 + TiO1,03: (1100 ° , 3×5 – TiC0,96 – ) ; . 10. TiO1,03 + TiC 4,24 Å TiC0,2O0,8 + COr 4,272 Å TiC0,96 + TiO1,03 s COr + Ti2O3 + g-Ti + TiC . 10. TiC0,96 TiC0,42O0,46 TiC0,6 4,31 Å TiO1,03 17 : C + TiO1,03 s COr + Ti2O3 + g-Ti, 4,326 Å (10) 4,31 Å g-Ti + TiC0,96 s TiC0,6 + TiC0,96–x , 4,326 Å (11) 4,26 Å Ti2O3 + TiC0,96 s TiC0,3O0,7 + COr, 4,300 Å (12) 4,21 Å Ti2O3 + TiC0,52 s TiC0,1O0,9 + COr. (13) , TiCx TiOy [C] + [O] s COr. TiCx (14), ( 4,314 Å 4,192 Å TiC0,65 + TiO0,78 . 11. – . 11). - 4,256 Å TiC0,65–xOy + TiO0,78–yCx . TiC0,32O0,39. (14) TiC0,65 + TiO0,78 . 18 TiOy , , . . (d = 1…3 (S = 19,0 2 / ). - , ( . . TiNz ) z , - [Ti] + C ( . 12). . . 12. TiNz+C, TiC~0,6 ( = 4,31 Å). Ti+C, V . IV, V, VIII , IV, NaCl) , , . , , . MeC–MeN–MeO - . ( ) – . ( ) = , . , // . , .– , 2011. – . 13, ヽ 3. – . 106–116. 2. . ., .C., . . // , . . – 1982. – . 6. – . 53–57. 3. . ., . . . – .: , 1984. – 124 . 4. ., . . – .: , 1991. – 448 . 1. . . - - 19 5. . . . – : , 1992. – 128 . 6. . – .: , 2003. – 527 . 7. . . « » « » // . . . – 1954. – . 24, ヽ 3. – . 375–387. 8. . . // . . .. . – 1923. – . 55, . 5/9. – . 342–367. 9. . . , // . . .. . – 1926. – . 58, . 8. – . 947–956. 10. . ., . . // . , . – 1969. – ヽ 2. – . 183–187. 11. Storms E., Calkin B., Yenche A. The Vaporization Behavior of the Defect Carbides. Part I. The Nb–C System // High Temp. Sci. – 1969. – Vol. 1. – P. 430–455. 12. . ., . . . . . // . . . – 1971. – . 45, ヽ 8. – . 2044–2046. 13. Guillermet A.F. Analysis of thermochemical properties and phase stability in the zirconium – carbon system // J. Alloys and Compounds. – 1995. – Vol. 217. – P. 69–89. 14. , . – .: , 1986. – 928 . 15. . . . – .: , 1962. – 96 . 16. . ., . ., . . . – .: , 1990. – 224 . 17. Mizuno M., Tanaka I., Adachi H. Chemical bonding in titanium-metalloid compounds // Phys. Rev. B. – 1999. – Vol. 59, ヽ 23. – P. 15033–15047. 18. A theoretical study on the chemical bonding of 3d-transition metal carbides / Y. Zhang, J. Li, L. Zhou, S. Xiang // Solid State Communication. – 2002. – Vol. 121. – P. 411–416. 19. First-principles calculations of mechanical properties of TiC and TiN / Y. Yang, H. Lu, C. Yu, J.M. Chen // J. Alloys and Compounds. – 2009. – Vol. 485. – P. 542–547. 20. Electronic structure and elastic constants of TiCxN1–x, ZrxNb1–x and HfCxN1–x alloys: A first-principles study / W. Weng, S. Cui, H. Hu, G. Zhang, Z. Li // Physica B. – 2011. – Vol. 406. – P. 3631–3635. 20 21. Yamashita J., Asano S. Electronic structure of CsCl-type transition metal alloys // Progr. Theor. Phys. B. – 1972. – Vol. 48. – P. 2119–2131. 22. . ., . ., . . IVa Va . – .: , 1981. – 144 . 3.09.2012 – (620990, . , 91, -mail: [email protected]). , , , . - Zhilyaev Victor Aleksandrovich – Doctor of Technical Sciences, Leading Research Associate, Institute of Solid State Chemistry, Ural Branch of RAS (620990, Yekaterinburg, Pervomayskaya st., 91, -mail: [email protected]). 21