15 » 1 . 2009 . . 2 I. : .............................................................................................................................................................7 . . ......................................................................................................................................................... 18 : . ......................................................................................................................................................... 29 . , . ............................................................................................................................ 38 . ....................................................................................................................................................... 48 . ....................................................................................................................................................... 56 – . ........................................................................................................................................................ 60 . ..................................................................................................................................................... 67 . ................................................................................................................................................... 77 : (U-TH-PB, HF, O, REE) . , . .......................................................................................................................... 87 , . ........................................................................................................................................................ 94 . ................................................................................................................................................... 101 II. . ............................................................................................................................................. 107 K/NA . .................................................................................................................................................. 129 , ) , , . .................................................................................................................................................... 135 . .................................................................................................................................................... 143 3 : . ....................................................................................................................................................... 151 – . ................................................................................................................................................ 159 . ................................................................................................................................................... 168 . ................................................................................................................................................. 177 . . , . ...................................................................................................................... 185 ......................................................................................................................................................... 189 , . .................................................................................................................................................... 197 . .................................................................................................................................................... 201 . ................................................................................................................................................ 207 . ..................................................................................................................................................... 215 - . .................................................................................................................................................... 219 , . .................................................................................................................................................. 223 . ................................................................................................................................................. 238 ( ) .................................................................................................................................................. 243 . III. : . .................................................................................................................................................. 251 . .................................................................................................................................................. 262 , . 4 ................................................................................................................................................ 269 . ................................................................................................................................................... 276 CC . , , ....................................................................................................................................................... 286 . .................................................................................................................................................... 290 . .................................................................................................................................................. 298 : , . . , . , , , ........................................................................................................................... 306 ................................................................................................................................................ 313 . . , ................................................................................................................................................... 317 . « » ................................................................................................................................................. 325 . ............................................................................................................................................... 335 . .......................................................................................................................................................... 341 . ................................................................................................................................................. 357 . .................................................................................................................................................... 363 . ....................................................................................................................................................... 368 . ....................................................................................................................................................... 379 5 6 : : : . , . , . . . , . , . , . . c . , Fe . (fO2), . fO2 , « CH4 H–Si, S–C, Si-H, Me–C) c 2- - » (H2O, CO2, OH , CO3 ) . « » (H2, [Kadik, et al., 2004; ., 2006]. – [Miyazaki, et al., 2004; Libourel, et al., 2003; Roskosz, et al., 2006; Kadik and Litvin, 2007]. [Kadik, et al., 2004; ., 2006; 2008] , . , fO2 , fO2. N2 , fO2, , . , , . . N–N, N–Si, N–H, N–O, N–C - fO2, , NH3, NH4+, Si3N4, CN , . 7 . , , 1.5 , 1600 4 , 1400-1600 , . 2009 (FeO+NaAlSi3O8)+ ) + H+ N 1.5 4 , 1400- fO2, 5 , logfO2(IW) (IW). , , logfO2(IW) fO2 -2 - , , , , (NH3, NH4+, Si3N4, CN- .), fO2 . ( ( ) ) – . NaAlSi3O8 , , . (NaAlSi3O8) Al2O3 Na2CO3. , SiO2, , , 3 1400 , 1 . 3–4 . 100–200 , , 3 . 20 SiC, Si3N4 24 . 200 1. 1. (% L5 NaAlSi3O8 ( . FeO , ) + FeO + Si3N4, .) 99%AbFeO+1%Si3N4 SiO2 Al2O3 FeO Na2O Si N 54.4 15.4 19.8 9.4 0.6 0.4 L6 97%AbFeO+3%Si3N4 53.3 15.1 19.4 9.2 1.8 1.2 L7 95%AbFeO+5%Si3N4 52.2 14.8 19.0 9.0 3.0 2.0 L8 93%AbFeO+7%Si3N4 51.1 14.5 18.6 8.8 4.2 2.8 4 1550–1600 1400 1.5 , 1981; Kadik, et al., 2004]. 3 6 [ 5 0.1 8 . Pt 10 5 . Pt 0.05 Pt. Pt30%Rh/Pt6%Rh ( 1500 5 ). 1600 10 . [Bohlen, Boettcher, 1982]. 0.1 . 1. , 1962] , [ , . Pt 5 Pt–Pt10Rh ±0.1 , 15 0.2 . 0.05 Pt. ±5 , 200 . 0.2 . Pt 120 . . ~200 . fH2, , [Kadik, et al., 2004]. f 2, IW. fH2 2 . T, f fH2 /fH2 Pt 2 . , 2, f 2 , . 2 : 2FeO=2Fe+ 2. SiC (1) : SiC( Si3N4 ( .)+O2= SiO2 Si3N4 .) + 3O2 )+ : 3SiO2 ). (2) ) +2N2 ( . (1–3) ), f (3) . 2 f 2(exp) IW logfO2(IW) = logfO2(IW) – log f 2(exp), fO2(IW) f 2(exp) IW , logfO2(IW) Fe FeO [e.g. Drake et al., 1989] logfO2(IW) = 2log(aFeO/aFe) FeO FeO– Fe . fO2 (4) . (5) , aFe – ( (x) a= x· logfO2(IW) = 2log (xFeO/xFe) + 2log ( FeO/ Fe) (6). 9 f 2(exp), , [ . ., 1992] logfO2(exp) = 2log(XFeO/aFe) – h/T(K) – dXi), h d– , X i(% .). (7) (7) , , . lgfO2(IW) fO2(IW) O’Neill and Pownceby [1993]. ( fO2 ), Fe 30–100 . , , , Fe Fe . , . Fe . C meca (Camebax-microbeam ., logf Fe W Pt ( Fe (IW) = -3.9. 2 Fe. Pt 0.1–1 % .). Pt 0.1 % . Cameca SX100). Fe , 2 % ., Pt W . 18 % . Fe W Fe , 0.4–1.9 % W , . 2. (% .)* 4 1550 L5 L6 L7 L8 logfO2(IW) -2.2 -2.4 -3.1 -3.9 FeO 9.21 (12) 8.58 (11) 4.02 (9) SiO2 62.17 (28) 64.12 (35) 68.84 (13) Al2O3 15.56 (7) 15.64 (12) 15.57 (15) Na2O 8.47 (7) 8.74 (11) 8.14 (13) N 0.36 (7) 1.22 (6) 1.57 (9) Total 95.77 (29) 98.30 (50) 98.14 (31) 2.45 (37) 70.45 (10) 15.58 (13) 8.51 (15) 1.86 (14) 98.85 (43) 10 . . 1 H+/30Si+ Cameca IVS 3f ( ). . O2 1200 10 - 10–15 nA 100±20 eV. 0.2–0.4 % . 1 30 + H+ Si 10 µm N–H–O C–H–O , , , , fO2. N 180º CCD Spectra Physics Ar+ T-64000 (Jobin Yvon), , . 514.5 50- 2 , . 1 -1 . 1 200 2 , . 3 80 140 . «Bruker IFS–113v», Microscope A590”, “IR 50 5 400 . , , . 350 5000 -1 2 -1 0.1%. , 128 . . 1. 4000 H–H 0–4200 -1 , O–H 3544 -1 logfO2(IW) = -2.2 3570 -1, , [Mysen, Virgo, 1986; Luth, et al., 1987]. OH2 fO2. , . , al., 1985] N–H N–H N–N . , , 3400–3700 3400 -1. . 1500N–H, N–N, , . . 1 -1 -1 , -2.4 . O–H . 1634–1625 - , 2 , [Dianov, et al., 2005]. logfO2(IW) = -3.9 , O-H , . 4135 -1 logfO2(IW)= -2.2 -3.9, , 2, [Luth, et al., 1987]. -1 2000–3500 , NH3 [Touray, et [Roskosz, et al., 2006], . 3287 -1 fO2 , NH3 , fO2 NH4+. 3287 -1 3315 -1 11 15 485 logfO2(IW)=-2.4 (L6) 90 . 20 , 25 1033 C-H (CH4) H2O 1620 2912 3570 N2 788 3287 - OH +H2O 5 3184 10 2331 + N-H (NH3,NH4 ) 0 4000 3000 2000 ,c 1000 0 -1 . 1. , (Fe) 4 1550 , (OH, H2, H2O, NH3 NH4+, N2 ) N–N . -1 . 2331 -1 , N2 , 2331 N2 . N2 N2 1300- 1700 C–H 2914–2915 -1 . 3 [Roskosz et al., 2006]. . logfO2(IW)= -2.2 [Kadik et al., 2004] . -2.4. . CH4 . , , . 1030–1120 -1, 784-798 -1, 490–483 -1 80–93 , 900–1200 -1, 800–850 -1 500–600 -1 [Neuvillie, Mysen, 1030–1120 -1, . 4, 0–1200 -1 1996; Mysen, 1998]. FeO . -1 , 1030–1120 -1 N[Schrimpf and Frischat, 1983] CaO–Na2O–SiO2. C , , Si3N4 [Wada, et al., 1981; Muraki, Si, Si3N4 et al., 1977], . N– 1000 -1 ( L5, L6, L7, L8 . 2. 3000 -1 ) - N–H, OH . . 12 4000, 1630–1615 -1 600 logfO2(IW)=-3.1 (L7) 500 + N-H (NH3, NH4 ) -1 3375 + NH4 3285 400 , H2O - 300 1440 1615 OH +H2O 3540 1790 200 100 0 4000 3500 3000 2500 , . 2. 2000 1500 1000 -1 , (Fe) 4 1550 , (OH, H2, H2O, NH3 NH4+, N2 ) -1 -1 . 3518 , 3538 3543 -1 logfO2(IW) = -2.2, logfO2(IW) = -2.4 logfO2 = -3.1 – OH [Stolper, 1982; Newman et al., 1986; Kadik et al., 2004]. 2 fO2 logfO2= -3.9 . 1626–1632 -1 , , [Dianov et al., 2005]. 2 N-H . logfO2(IW) = -2.2 3318 -1 -1 -1 3194 , logfO2(IW) = -2.4 -3.1 3373 3287 , logfO2(IW) = -2.2 logfO2= -3.1 3374 3306 -1 1430-1440 -1 , , N–H [Keller and Halford, 1949; France et al., 1984; Harlov et al., 2001; Busigny et al., 2004]. 3300 -1 Si3N4 CaO–Na2O–SiO2 1400 oC [Mulfinger, 1966]. , NH4, , [NH4]Al2[AlSi3O10] (OH)2, -1 2800-3300 , NH4+ [Harlov et al., 2001]. 3300 -1, 3175 -1, 3035 cm-1 2825 -1. 3145 -1, 3040 -1, 1680 -1 1430 -1[Nakamoto, 1978;]. , N–H – NH3. NH4+, 13 fO2 , N N–H (NH3, NH4+). N–Si N2 H , , [Mulfinger, 1966]. - 2 . 2. , fO2 2 . , , 2007-2008 2009 [Galimov, 2005]. , H–N–O fO2, . C–N–H–O , . , . . , , . , , , Fe , . , , ,– , . 14 , N . [Miyazaki et al., 2004; Libourel, et al., 2003; Roskosz et al., 2006; Kadik, Litvin, 2007; 2008] fO2 . , fO2 , fO2 FMQ, N2 ppm. fO2 IW ppm. , fO2 ( ). . , – . . , – . , , , , . [Javoy, 1997; Tolstikhin, Marty, 1998; Marty, Dauphas, 2003]. N-H , logfO2(IW)=-(3-4). 2 .% , fO2 IW. n× 10-4 % . [Miyazaki et al., 2004; Libourel et al., 2003]. , fO2 N2 , 4, 2 [Galimov, 2005] , , 2 2, NH3. 1. ., ., ., 1992. . 2. , ., ., , ., 9, .1231-1240. ., ., 2006 . , 3. 1, . 38-53. ., 2008 : . . .: .: », 2008. 367- « 379. 4. ., 1981. . , 8, . 1234-1242. 15 5. . 1962. . . .: . . . 212– 215. 6. Bohlen S.R., Boettcher A.L., 1982. The quartz-coesite transformation: a precise determination and the effects of other components. Jour. of Geophys. Res., 87(B8), 7073-7078. 7. Busigny, V., Cartigny, P., Philippot, P. and Javoy, M., 2004. Quantitative analysis of ammonium in biotite using infrared spectroscopy. Amer. Miner., 89, 1625-1630. 8. Dianov, E. M., Koltashev V.V., Klyamkin S.N., Malosiev A.R., Medvedkov O.I., Plotnichenko, V.G., Rybaltovskii, A.A., Rybaltovskii, A.O., Sokolov, V.O. & Vasiliev S.A., 2005. Hydrogen diffusion and ortho-para conversion in absorption and Raman spectra of germanosilicate optical fibers hydrogen-loaded at 150-170MPa. Jour. of Non-Crystalline Solids, 351 (49-51), 3677–3684. 9. Drake M.J., Newsom H.E., Capobianco C.J., 1989. V, Cr, and Mn in the Earth, Moon EPB and SPB and the origin of the Moon: experimental studies. Geochim. Cosmochim. Acta, 53, 2101-2111. 10. France et al., 1984 France, P.W., Carter, S.F., Williams, J.R., 1984. NH+4 absorption in fluoride glass infrared fibers. Journal of the American Ceramic Society, 67 (11), p. 243-C244. 11. Galimov, E.M., 2005. Redox Evolution of the Earth Caused by a Multistage Formation of Its Core. Earth and Planetary Science Letters, 233, 263-276. 12. Harlov, D.E., Andrut, M., Melzer, S., 2001. Characterisation of NH4-phlogopite (NH4) (Mg3) [AlSi3O10] (OH)2 and ND4- phlogopite (ND4) (Mg3) [AlSi3O10] (OD)2 using IR spectroscopy and Rietveld refinement of XRD spectra. Phys. Chem. Miner., 28 (2), 77-78. 13. Javoy, M., 1997. The major volatile elements of the Earth: origin, behavior, and fate. Geophys. Res. Lett., 24 (2), 177-180. 14. Kadik, A.A., Pineau, F., Litvin, Yu.A., Jendrzejewski, N., Martinez, I., Javoy, M., 2004. Formation of carbon and hydrogen species in magmas at low oxygen fugacity during fluidabsent melting of carbon-bearing mantle. Jour. Petrol., 45 (7), 1297-1310. 15. Kadik, A.A. and Litvin Yu.A., 2007. Magmatic transport of carbon, hydrogen and nytrogen constituents from reduced planetary interiors. Lunar Planet. Sci. XXXVIII. LPI Contrib. No. 1338, 1020 16. Kadik A.A. and Litvin Yu.A., 2008 The role of the hydrogen and oxygen fugacity on the incorporation of nitrogen in reduced magmas of the early Earth’s mantle. LPS XXXIX. 2008. 1037 17. Keller, W.E. and Halford, R.S., 1949. Motions of Molecules in condensed systems. IV. The infra-Red Spectra for Ammonium Nitrate and Thallous Nitrate. Jour. Chem.Phys., 17 (1), 26-30. 18. Libourel G., Marty B., Humbert F., 2003. Nitrogen solubility in basaltic melt. Part I. Effect of oxygen fugacity. Geochim. Cosmochim. Acta, 67, 4123-4135. 19. Luth, R. W., Mysen, B.O. & Virgo, D., 1987. Raman Spectroscopic Study of the Solubility Behavior of H2 in the System Na2O–Al2 O3–SiO2–H2. Amer. Miner., 72, 481-486. 20. Marty, B. and Dauphas, N., 2003. The nitrogen record of crust-mantle interaction and mantle convection from Archean to Present. Earth Planet. Sci. Lett., 206, 397-410. 21. Miyazaki, A. Hiyagon, H. Sugiura, N., Hirose, K. & Takahashi, E., 2004. Solubilities of nitrogen and noble gases in silicate melts under various oxygen fugacities: Implications for the origin and degassing history of nitrogen and noble gases in the Earth. Geochim. Cosmochim. Acta, 68, 387-401. 22. Mulfinger, H.O., 1966. Physical and chemical solubility of nitrogen in lass melts. Jour. Amer. Ceramic Soc., 49, 462-467. 23. Muraki, N., Katagiri, G., Sergo, V., Pezzotti, G. & Nishida T., 1977. Mapping of residual stresses around an indentation in -Si3N4 using Raman spectroscopy. Jour. Mater. Sci., 32, 5419-5423. 16 24. Mysen, B.O., 1998. Transport and configurational properties of silicate melts: Relationship to melt structure at magmatic temperatures. Phys. Earth Planet. Inter., 107, 23-32. 25. Mysen, B.O. and Virgo, D., 1986. Volatiles in Silicate Melts at High Pressure and Temperature: 2. Water in Melts along the Join NaAlO2–SiO2 and a Comparison of Solubility Mechanisms of Water and Auorine. Chem. Geol., 57, 333-358. 26. Nakamoto, K., 1978. Infrared and Raman spectra of inorganic and coordination compounds (3rd ed.). New York: John Wiley and Sons. 27. Neuville, D.R. and Mysen, B.O., 1996. Role of aluminium in silicate network: In situ, high-temperature study of glasses and melts on the join SiO2-NaAlO2. Geochim.Cosmochim. Acta, 60, 1727-1737. 28. Newman, S, Stolper, E.M and Epstein, S., 1986. Measurement of water in rhyolitic glasses: Calibration of an infrared spectroscopic technique. Amer.Mineral., 71, 1527-1541 29. Roskosz M., Mysen B.O., Cody G.D., 2006. Dual speciation of nitrogen in silicate melts at high pressure and temperature: An experimental study. Geochim. Cosmochim. Acta, 70, 2902-2918. 30. Schrimpf, C., Frischat, G.H., 1983. Property-composition relations of N2-containing Na2O-CaO-SiO2 glasses. Journal of Non-Crystalline Solids, 56, 153-160. 31. Stolper, E., 1982. The speciation of water in silicate melts. Geochim. Cosmochim. Acta, 46, 2609-2620. 32. Tolstikhin, I.N. and Marty, B., 1998. The evolution of terrestrial volatiles: a view from helium, neon, argon and nitrogen isotope modeling. Chemical Geology, 147, 27-52. 33. Wada, H. and Pehlke, R., 1981. Nitrogen solubility in liquid Fe-V and Fe-Cr-Ni-V alloys. Metal. Trans., 12B, 333-339. 17 : : . , . , . . , . , . , . , . . , , , . - , – , . , , , , , , , . , , , , , . , , , , , , . ( , ), , . , – . , , , , , , . 18 » 18 2006-2008 . . , , . ( ) . , , , , , , . . 1. , , Miyama, 1999; Sano (Sano, , ., 2000; Velikhov, 1959). (Hawley, Balbus, 1991). , . , ( , ., 1996; Bisnovatyi-Kogan, Lovelace, 2001; Armitage . 2001). , , 1979; Brandenburg 2 , c s2 ) ( B /4 . , , ( ), , ), . , ( ) z) ( , . , , , , , . , , , , ( ) , , , ( , 1987). , . 19 ( , 2001, 2004; 2005 2006; 2007, 2008; Marov, Kolesnichenko, 2002; 2006) , , , - , , , , , . , , , , , , . , , , , 2009 . . , , : 1. , ; 2. , , (Shakura, Syunyaev, 1973); 3. , , , ; 4. ( ) , , , , , ( , ) . , . II. - 20 , (r 1 .). ., 2008). ( 2009 . . 1. . (r) 62 Gk ( 1 khd 2 K k , hd , k g d ) Vd 1 ci , , g , ci , Vd : 2 g g k 2 (1 2 )Vd 2 0. d d – 2 / d r = 1 . K < 0, , – , hd – , ci - – , Vd – d g . ( ., 2008) , k = 0, . d , 1, d - d ~ 20 . kcr cr * 103 0. 0; k ~ k, ~ d 2hd d min, ( ~ 3M S / 4 r 3 ), t k d : ( . max= d 2.2 4.4hd * , ). , ~4 , . . , ~ , 1. d , . , d ~ 2500 , cr k , cr . / g ~ 100 . , ( ~ 0.2 - 0.7 0 ). R1 R0 2 3 R0 mc G mc 2 G 2 2 , 1 m 3 3 R0 6 . tc 1/ max , , , ~ d 2.2 * 21 = 0.5 1. r =1 d 8 . hd=2.4 10 2 = 150 , . 1. d( ) mñ ( ) 1 3.8 1020 2 3.8 1020 4 3.2 1020 10 1.6 1020 20 6.8 1019 tc ( ) R0 190 3.35hd 0.2 7.0 10 5 12.5 61 3.35hd 16 3.05hd 1.9 2.15hd 0.3 1.4hd R1/R0 3 ) 1 0.2 7.0 10 15.4 0.18 3.5 10 15.4 5 0.12 1.7 10 34.7 5 0.08 8.3 10 78 4 4 2. . , , A c i2 V / VK ( , ). dr dt Vr mc g , r / 1 à.å. g1 r B 1 à.å. d =10 = =2500 Vr 2 1 , B 0.2 g1 m1c / 3 2/3 c ( V )2 . ci1 , T 6.7 (r / 1à.å.) 0.75 . q =300 K T1 r / 1 = 2.4 ñì ñ 1 . 4 r1 1 (r / r1 ) 0.25 , B 0.1 . . r 1.2 10 5 ëåò . r p q/2 1, c p 1 d 1 . . 0.5 . . 4.5 10 4 ëåò , r 105 , , B, . 3. , ñ, , . Vr B , , k1 mc2 / 3 , ñ d ( k1 1/ 3 c Vr , 1 ). . R1 0.5 1.85. =10 ( ñ, . r, mc . 1) ñ = d c 2 10 2 1 ëåò , 2-3 r. , . 1 2 dmc / dt , 190 r. , , c , r 103 , 4.5 10 4 ëåò Vr , 22 mc / 12 Vr . , . , , . 4. 26 Al, . , ( 2.8 10 ., 2008). 1.3 .%, 5 Al 26 10 - 4 27 Al = 5 10 5 6 10 ( AIs) 1 1 ) = 4.1 10 =9.63 10 4 1 t = 6 105 : Q = 1.3 104 , Wtur = ( V)2 = 3.9 r = 1 . ., , 1 . 100–150 Al 5 1 1 1 . 7 1 (1.3 1 , Q/Wtur ~ 10 4.. . , 26 - ~ 10 Al 3 3 , . III. ( ) , , , . , . 2009 . 1. «Spitzer»), . ( , ~ 10-30 (100-300 , , ~ 8-10 . . ), . , «snow line» ( ), . , , , . 2. , 206 / 182 W CAIs 95%) , Allende NWA 2364 ( 4568.55 0.90 . Pb/204Pb, 26Al/26Mg, CV3 182 Hf . ( ) 23 . ( 4564.91 . . 3,64 1.52 95%- ) , . . ( ) (Mittlefehldt, 2003; Klein et al., 2008 ,b; Spivak-Birndorf et al., 2009). 3. , , , 1-2 . (Burkhardt et al., 2008). , 53 , Mn/53Cr 6(Orgueil (CI1), Dar al Gani 749 (CO3.1), Lancé (CO3.4), Ningqiang (CK3), Vigarano (CV3), . . Allende (CV3)) 4,568.0-0.91+1.17 1-1.5 . . HED (howardite-eucrite-diogenite), ( ), ( ) ). , , , 4 , HED (Takeda et al., 1976;1979;1983; Binzel and Xu, 1993; Gaffey, 1997; Mittlefehldt et al., 1998 Drake, 1979; 2001). 4. , 26 – 0.72 , . 26 ) 60 (0.5-2) 10-6 Fe Al, 26 , ~5 2-4 . 5 10-5 .% ( , , Al .% 1.2 26 . . ). , Mg (Bizzarro et al., 2005). 90% . ( Al, , 1-2 . . 26 . Al 13 100-300 4% , . CAIs , , , 2 . 1.5- . IV. , , . , ~1 , . 10 0.1-1 10 , . ( 15 - 10 24 , 19 (~ 10 - 10 , .) ) ~ 0,1 ( ., 2008; , , 2009). , « » . , , . - , 1981; Bird, 1994; , ( , 1965; Hockney R. W. et al., ., 2009). , , , , 1994; , . , , , V . , . t, . , , . , , , . » , , . , . . DSMC (Bird, 1994) m d. , : mi di. : 1. m = 6.0 1011 d = 2750 , 2.5 10-13 -3 , , n= cd = 300 ( ). ) . 0,55 , 0,85 , . : , . . 25 : 150 , ( 250 ) . , (« ») . , , , . 2. . 68000 34000 = 6.0 · 1014 , « -15 » d = 5950 , d = 20 -3 n0 = 1.2 · 10 , m . . : , . x( ) 500 /c. 1020 . . , ( 500 ) , , ( ). 300 . , t = 0.6 ·105 c, t = 0.8 · 105 c, t = 1,2 · 105 c t = 2.0 · 105 c. , 2 , , , : t = 0.8 · 105 c t = 1.2 · 105 c t = 1.6 · 105 c t = 2.0 · 105 c , , . , , 10 . 3. ( , , 1976). » d = 5950 , 108 . , « n0 = 2,5 · 10-14 -3 , , , R=4· m = 6.0 · 1014 wd = 2.75 · 10-6 s-1, n r. , , . , , « 26 , wd . , » . , , . . . , 1994. . . . ”. 1998. 336 . . , // . . 2006. .40. ., .: . .: . .: , 1965. . . : 1. . 1-62. . // . . 2008. .42. 3. C.1– 50. . . // ”. .: . . “ , 2003. . 123-162. . // . . 2004. .38. 2. . 144-170. ., . . . . , , 2009, . 632. ., ., ., Chernov. // . URSS, 2008, .223-273. ., . . ., Dorofeeva, I.N. Ziglina, A.A., : / . ., ., , 2009 ., . 21, . 9, . 34 — 42. ., . , ,1976. ., . . .: . 1979. 511 . Armitage P.J., Livio M., Pringle J.E. Episodic accretion inmagnetically layered protoplanetary disks// Mon. Notic. Roy. Fstron. SOC. 2001. v. 324. p. 705-711. Binzel R. P., Xu S. Chips off of asteroid 4 Vesta: Evidence for the parent body of basaltic achondrite meteorites // Science. 1993. V. 260. P. 186–191. Bird G.A. Molecular gas dynamics and the direct simulation of gas flows. Claredon Press, 1994. Bizzarro M., Baker J.A., Haack H., Lundgaard K.L. Rapid timescales for accretion and melting of differentiated planetesimals inferred from 26Al-26Mg chronometry // The Astrophysical Journal. 2005. V. 632. L41–L44. Bisnovaty-Kogan G.S., Lovelace R.V.E. Advective accretion disks and related problems including magnetic fields// New astron. Rev. 2001. V. 45. P.663-742. Brandenburg A., Nordlund A., Stein R.F., Torkelsson U. The disk accretion rate for dynamo-generated turbulence// Astrophys. J. 1996. V. 458. P. 145-148. .: 27 Burkhardt C., Kleine T., et al. Hf - W mineral isochron for Ca,Al-rich inclusions: Age of the solar system and the timing of core formation in planetesimals // Geochim. Cosmochim..Acta. 2008. V. 72. Iss. 24. P. 6177-6197. Drake M. J. Geochemical evolution of the eucrite parent body: Possible nature and evolution of asteroid 4 Vesta. In Asteroids (T. Gehrels, ed.). Univ. of Arizona, Tucson. 1979. P. 765–782. Drake M. J. The eucrite Vesta story // Meteoritics & Planet. Sci. 2001. V. 36. P. 501– 513. Gaffey M. J. Surface lithologic heterogeneity of asteroid 4 Vesta // Icarus. 1997. V.127. P. 130–157. . // . 1987. . 151. . 329Kleine T., Bourdon B., Burkhardt C., Irving A. J. Hf–W chronometry of angrites: constraints on the absolute age of CAIs and planetesimals accretion timescales // Lunar Planet. Sci. Conf. XXXIX. 2008. 2367pdf. (a) Kleine T., Touboul M. et al. Hf–W thermochronometry: closure temperature and constraints on the accretion and cooling history of the H chondrite parent body // Earth Planet. Sci. Lett. 2008. V. 270. P. 106–118. (b) Hawley J.F., Balbus S.A. A powerful local shear instability in weakly magnetized disks. II. Nonlinear evolution// Astrophys. J. 1991. V. 376. P. 223-233. Hockney R. W. Eastwood J. W. Computer Simulation Using Particles. McGraw-Hill, New York, 1981 ( . ., . . ., , 1987). Marov M.Ya., Kolesnichenko A.V. Mechanics of turbulence of multicomponent gases. Dordrecht, Boston, London.: Kluwer Academic Publishers. 2002. 375 p. Marov M.Ya., Kolesnichenko A.V. Chaotic and ordered structures in the developed turbulence. In: “Astrophysical disks: Collective and stochastic phenomena”(eds.: A.M. Fridman, M.Ya. Marov,). Springer. Printed in the Netherlands. 2006. P. 23-54. Mittlefehldt D. W., McCoy T. J., Goodrich C. A., Kracher A. Non-chondritic meteorites from asteroidal bodies. In Planetary Materials (J. J. Papike, ed.). 1998. P. 4-1 to 4-195. Mittlefehldt, D. W. Achondrites //Treatise on Geochemistry. 2003. V. 1, ed. A. W. Davis (Oxford: Elsevier-Pergamon). 291-324. Sano T., Miyama S.M. Magnetorotational instability in Protoplanetary disks. I. On the global stability of weakly ionized disks with ohmic dissipation//Astrophys. J. 1999. V. 515. P. 776-786. Sano T., Miyama S.M., Umebayashi T., Nakano T. Magnetorotational instability in Protoplanetary disks. II. Ionization state and unstable regions//Astrophys. J. 2000. V. 543. P. 486-501. Shakura N.I., Sunyaev R.A. Black holes in binary systems. Observational appearance// Astron. Astrophys. 1973. V. 24. P. 337-355. Spivak-Birndorf L., Wadhwa M., Janney P. 26Al-26Mg systematics in D’Orbigny and Sahara 99555 angrites: Implications for high-resolution chronology using extinct chronometers // Geochim. Cosmochim. Acta. 2009. V. 73. Iss. 17. P. 5202-5211. Takeda H., Miyamoto M., Ishii T., Reid A. M. Characterization of crust formation on a parent body of achondrites and the moon by pyroxene crystallography and chemistry // Proc. Lunar Sci. Conf. VII. 1976. P. 3535–3548. Takeda H. A layered-crust model of a howardite parent body // Icarus. 1979. V. 40. P. 455–470. Takeda H., Mori H. et al. Mineralogical comparison of Antarctic and non-Antarctic HED (howardites-eucrites-diogenites) achondrites // Mem. Natl. Inst. Polar Res., Spec. 1983. Issue. 30. P. 181–205. Velikhov E.P. Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic fluid//Sov. Phys. JETP.1959. V.9.P. 995-998. 28 : : : . , . . , . . , . , . . 1. , , . " 17" [Langseth et al., 1976] , , 500 [Nakamura, 1983] . ~1 . , -15 [Ringwood, Essene, 1970]. , 500 ( [Wieczorek et al., 2006]. ), – ( 1000 . [Lognonné, 2005]. » 500 ), 1000-1500 , (Q = 4000-7000 P-, S) [Nakamura, Koyama, 1982] [Latham et al., 1972] , 1000 et al., 1981; Nakamura, 1983]. , ) Gagnepain-Beyneix et al., 2006], 20-25 « , . [Goins ([Khan et al., 2000, 2007], ([Lognonné, 2005; Lognonné et al., 2003; , ) P- S , », . , [Goins et al., 1981; Nakamura, 1983]. . [ , , 1998; Kuskov, 1995, 1997], , . 29 , , . , , ( ) . . , : (1) ) ; (2) [ , , 2009]. 2. 2.1. ( , .) , . , THERMOSEISM MgO-Al2O3-SiO2 (NaTiCFMAS) 1997]. . Na2O-TiO2 aO-FeO[Kuskov, 1995, 2.2. ( ) [Kuskov et al., 2006]: P (V , T ) Pp (V ) V ET (V , T ) , (1) 2.3. ( ) ( ), . , , , – [Kuskov, 1995, 1997]. 2.4. , 30 , a priori , « » » . ( (VP) (VS) [Kuskov et al., 2006]. . ) 2.5. , , - , ; - . P- S Vanh(P, T, X), , VP2 KS VS2 G 4 / 3G : , (2) , (3) (KS) ( ) (G) (1). . - . : P=P {1 [(R H)/R]2}, Po = 47.1 - (4) , R = 1738 ,H- . 2.6. , , QS QS(P,T, ) = AT T, , g - QP. QS : exp( gTm( )/T). (5) , , 500 : T = 0.5, = 0.2, g = 30. 1 Hz. [Hirschmann, 2000]. [Ringwood, Essene, 1970] . 2.7. . S- P- , , , [Karato, 1993]: Vanel(P, T, X, ) =Vanh(P, T, X)[1 – 1/2Q(P,T, )tan( /2)], (6) 31 V Vanel(P, T, P,S. ( , ) , ), . . , . 3. 8- (1969-1977 .), , -12, 14, 15, 16", [Goins et al., 1981; Nakamura, 1983]. [Khan et al., 2000, 2006a,b, 2007] [Lognonné, 2005; Lognonné et al., 2003; Gagnepain-Beyneix et al., 2006] PS . ( . 1) . ( ~50-300 , ~3-15 ) . -1 VP, km s V , k m s -1 S 7,6 7,8 8,0 8,2 4 ,0 4 ,2 4 ,4 4 ,6 (B ) 4 200 200 2 400 H, km H, km 400 3 600 600 800 4 800 2 1000 1000 1 1 - Gagnepain-Beyneix et al. (2006) 2 - Khan et al. (2007) 3 - Kuskov et al. (2002) 4 - Lognonne (2005) . 1. 1 2 3 4 - 3 1 G a g n e p a in -B e y n e ix e t a l. (2 0 0 6 ) K h a n e t a l. (2 0 0 0 ) K u s k o v e t a l. (2 0 0 2 ) L o g n o n n e (2 0 0 5 ) ( ) ( ) . 1 - Gagnepain-Beyneix et al. (2006), 2 - Khan et al. (2000), 3 – Kuskov et al. (2002), 4 - Lognonné (2005). [Lognonné, 2005; Gagnepain-Beyneix et al., 2006] . 4. ) 32 . , . FeO [Taylor, et al. 2006; - ( ) , 2004; Kuskov, Kronrod, 1998; Lognonné et al., 2003]. [Kuskov, Kronrod, 1998] + ), . 1). ( aO + FeO Al2O3 + 1. ( (Ol-Px) [Kuskov, Kronrod, 1998] 32.0 11.6 2.25 1.8 52.0 0.05 0.3 83.0 .%) MgO FeO Al2O3 CaO SiO2 Na2O TiO2 MG# ( , VP, VS, .%) 200 3 / (10.2 [McDonough, 1990] 37.58 8.48 4.50 3.64 45.25 0.34 0.21 88.8 / 680oC) 77.0 9.0 13.0 0.4 0.6 20.6 31.1 44.7 0.3 3.3 3.321 7.711 4.449 3.307 8.005 4.555 5. ( , . 1. P- S) S (Kuskov et al., 2006). , , ( , . 2-3) , - , , ( ), . , . 2-3 , . S . 5.1. . 2 2 , TP – TS , (Ol-Px) (Pyr). [Goins et al., 1981; 33 Nakamura, 1983] ~300 – , . . , 1982]. , 300-500 TP TS . TP TS, , o (~400 C) 270 . , ( [Kuskov, 1997; Kuskov, Kronrod, 1998]), , . 2 2 , TP TS , [Goins et al., 1981; Nakamura, 1983] 200 , [Nakamura, Koyama, , [Goins et al., 1981; Nakamura, 1983] , . 3. . TS, oC TP, oC 400 600 800 1000 1200 1400 400 600 800 1000 (A) 100 (B) lidu H, km s H, km So s lidu So 100 200 300 400 Pyroxenite 200 300 Pyroxenite 400 Nakamura (1983) Goins et al. (1981) 500 Nakamura (1983) Goins et al. (1981) 500 o TP, oC 1000 1200 1400 1600 300 1000 1200 1400 (D) 200 300 400 Pyrolite Nakamura (1983) Goins et al. (1981) . 2. 800 100 200 500 600 1800 H, km H, km T S, C (C) 100 400 1200 500 Pyrolite Nakamura (1983) Goins et al. (1981) (TP, TS) , . 1) [Goins et al., 1981; Nakamura, 1983] . 2. Ringwood, Essene (1970) . ,b– , c, d – . ( ( ) – Hirschmann (2000) 50-250 ( ), [Lognonné, 2005; Gagnepain-Beyneix et al., 2006] Ol-Px , , : (100 ) = 590 100 , S(100 ) = 520 . 3). , 300-500 , [Lognonné, 2005; Gagnepain-Beyneix et al., 2006] Ol-Px , 34 120 ( ~350 S ( . 3), . 3). o o T P, C 500 600 700 800 900 400 800 1000 1200 1400 1600 Sol id (A) 100 600 us 400 T S, C 100 200 200 300 300 Pyroxenite H, km 400 Gagnepain-Beyneix et al. (2006) Lognonne (2005) Khan et al. (2000) 500 Gagnepain-Beyneix et al. (2006) Lognonne (2005) Khan et al. (2000) Khan et al. (2000, 2007) 400 500 (B) TS, oC o TP, C 600 800 1000 1200 600 (C) 100 200 300 300 H, km H, km Pyrolite Gagnepain-Beyneix et al. (2006) Lognonne (2005) Khan et al. (2000) 500 . 3. 1000 1200 1400 Pyrolite 400 500 1600 Gagnepain-Beyneix et al. (2006) Lognonne (2005) Khan et al. (2000) Khan et al. (2000, 2007) (D) (TP, TS) , [Lognonné, 2005; Gagnepain-Beyneix et al., 2006; Khan et al., 2000, . . V (50-500 ) = 8 (Khan et al., 2000), VS (50-500 ) = 4 (Khan et al., 2000) VS (50(Khan et al., 2000, 2007). ( )– Ringwood, Essene Hirschmann (2000) . ,b– . 2007] 1. S 500 ) = 4.4 (1970) , c, d – Gagnepain-Beyneix et al. (2006) . 1), ~240 S ( ( 800 100 200 400 , 1400 Sol idu s H, km Pyroxenite ( . 3). , ), ( ). V . Lognonné (2005) S ( , . 3 ). , , 500- 600 . 920 , 100 = 1100-1250 [Lognonné, 2005; Gagnepain-Beyneix et al., 2006] [Gagnepain-Beyneix et al., 2006] ( , . 3), . , . S = , 35 . , . 6. : (1) , ; (2) : (100 ( ) ~400-500 , (300 ) ) ~600-750 , 240-270 (500 ) ~750-1000 ; (3) 300 ; (4) . 2009 .: 1. ., ., : ., . , / .: 2. ., 3. ., , 2009. 576 . ., // . ., .2009, // ., . 12. . 2009. Inter. Sci. Symposium The Moon, moons and planets, August, Kazan; Int. Conf. Geodynamical Phenomena, Suzdal; Goldschmidt Conf., Davos; Vernadsky-Brown Microsimposium; . , ); . . , ; , ,X . . . . 9. . 25-40. ( , , . . // ., . 1998. 6. . 615-633. ., . // . 2004. 7. . 691-706. . // . 2009. 9. . 25-40. Gagnepain-Beyneix J., Lognonné P., Chenet H., Lombardi D., Spohn T. A seismic model of the lunar mantle and constraints on temperature and mineralogy // Phys. Earth Planet. Inter. 2006. V. 159. P. 140-166. Goins N.R., Dainty A.M., Toksoz M.N. Lunar seismology: The internal structure of the Moon // J. Geophys. Res. 1981. V. 86. P. 5061-5074. Hirschmann M.M. Mantle solidus: Experimental constrain and the effects of peridotit composition // Geochemistry Geophysics Geosystem. 2000. V.1. P. 1525-2027, doi. 2000GC000070. 36 Karato S. Importance of anelasticity in the interpretation of seismic tomography // Geophys. Res. Lett. 1993. V. 20. P. 1623-1626. Khan A., Connolly J.A.D., Maclennan J., Mosegaard K. Joint inversion of seismic and gravity data for lunar composition and thermal state // Geophys. J. Int. 2007. V. 168. P. 243–258. Khan A., Mosegaard K., Rasmussen K.L. A new seismic velocity model for the Moon from a Monte Carlo inversion of the Apollo lunar seismic data // Geophys. Res. Lett. 2000. V. 27. P. 1591-1594. Kuskov O.L. Constitution of the Moon: 3. Composition of middle mantle from seismic data // Phys. Earth Planet. Inter. 1995. V. 90. P. 55-74. Kuskov O.L. Constitution of the Moon: 4. Composition of the mantle from seismic data // Phys. Earth Planet.Inter. 1997. V. 102. P. 239-257. Kuskov O.L., Kronrod V.A. Constitution of the Moon: 5. Constraints on composition, density, temperature, and radius of a core // Phys. Earth Planet. Inter. 1998. V. 107. P. 285- 306. Kuskov O.L., Kronrod V.A., Annersten H. Inferring upper-mantle temperatures from seismic and geochemical constraints: Implications for Kaapvaal craton // Earth Planet. Sci. Lett. 2006. V. 244. P. 133-154. Kuskov O.L., Kronrod V.A., Hood L.L. Geochemical constraints on the seismic properties of the lunar mantle // Phys. Earth Planet. Inter. 2002. V. 134. P. 175-189. Langseth M.G., Keihm S.J., Peters K. Revised lunar heat flow values // Proc. Lunar Planet. Sci. Conf. 7th. 1976. pp. 3143-3171 Latham G., Ewing M. Dorman J., Lammlein D., Press F., Toksoz,N., Sutton G., Duennebier F., Nakamur Y. Moonquakes and lunar tectonism // The Moon.1972. 4. P. 373-382. Lognonné P. Planetary seismology // Annu. Rev. Earth Planet. Sci. 2005. V. 33. P. 571– 604. Lognonné P., Gagnepain-Beyneix J., Chenet H. A new seismic model of the Moon: implications for structure, thermal evolution and formation of the Moon//Earth Planet. Sci. Lett. 2003. V.211. P.27-44. Nakamura Y. Seismic velocity structure of the lunar mantle//J. Geophys. Res. 1983. V. 88. P. 677-686. Nakamura Y., Koyama J. Seismic Q of the lunar upper mantle // J. Geophys. Res. 1982. V. 87. P. 4855-4861. Ringwood A.E., Essene E. Petrogenesis of Apollo 11 basalts, internal constitution and origin of the Moon // Proc. Apollo 11th Lunar Sci. Conf. 1970. V. 1. P. 769-799. Taylor S.R. , Taylor G.J., Taylor L.A. The Moon: A Taylor perspective // Geochim. Cosmochim. Acta. 2006. V. 70. P. 5904-5918. Wieczorek M.A., Jolliff B.L., Khan A. // Rev. Mineral. Geochem. 2006. V. 60. P. 221-364. 37 : : . . , , . , . . . , . , . . 1 15 « » 2009 . [1, 2, 3, 4, 5] . , . , [6]. , . . [7] . , , . [6]. , . 0.1 . . , , . . 1 2. 3 . , . 38 1. , [8]. . . , – . , . [8]. , , . . . 1.1. , , , H3T x, r , t . (x,r) 1 4 x, r , t V t R x xV , rV , t rV dxV drV d R xV 2 r rV cos V : , 2 (1.1) rV sin V 2 V , xV , rV , , V V. : 2 x, r , t x2 r r r x, r , t . r (1.2) (1.2) [3]. : f x , r ,t , n x ,r - g x , r ,t , . . H3T – . ( , ) . , . . . 39 , , 0 n . . (1.1), , R . , , , – (x,r) – , , , x. « . » . V M . (1.1) . (xc, rc), x ,r . Mc/2N 2 rc. Vc/2N 2N . (xc, rc) x = 2 /2N, . x ,r Mc, x ,r Mc 4 N : xc , rc Vc 4 2N Mc N xc x 2 2 c r 2N xc x 2 x ,r , Mc rc2 r2 2rc r cos n 1 / 2 0.5 n 1 r (1.3) 2 0.5 2rc r cos n 1 / 2 n 1 0 x= , x ,r , » (1.3) xc (-xc). (xc, rc) (1.3) x ,r x , r ,t , x ,r . , f x ,r ,t . 1.2. , , , , . . , . , « » , . , . – [9]. 40 , . = 1.43. 1.2.1. (x,r), ( . 1.1). 0.001 x 1 ( 4), 0.001 R0 = 0.001 ( 2). . RN = 1 ( 3) r 1 ( 1) . N = 200 – 1 , r 36 . . 1.1. : Wn = 0 (Wn = 0, p = 0) 3. 0.5 1, 2, 4 « = 0, » : 1). x = 0 0 0 0.5 1 x . 1.1. . n 0, 1 n 0, 4 3 3 2). 2, 3 n 0. 2 1. , (1.3). 1, 4 – – . 3). , (1.3), , – 1, 2, 3, 4. , . , (1.3), , . 1.2.2. , . , , – 2– . 1.2. 45° . R0 = 0.001 RN = 1, 9, 10, 11, 12, – 18, , . 1.1, . , , R = 0.7003, r . 1 3 - 5, 6, 7, 8. 1, 4 - 200, 9, 12 – 140, . 1, 2, 3, 4, 6, 7 – 60. , . : 2, 4, 6, 9, 10 – 41 Wn = 0, = 0, 3, 5 – 1, 7, 12, . p = 0. , 8, Wn = 0, 11 – : 1 1). , r 3 : 2, 0.5 n 0 0 0.5 n 1 3, 5, n 0 4, 6, 9, 10. 1, 7, 12 2 1 =1 0, 8, 11 1.935548 , x . . 1.2. 2). 8, – . (1.3). 3). 1, 4, 6, 7, . 9, 11, 8, 11 , 12 (1.3). , . « » 1, 2 1, 3 2%. , , , , , . 2. , . , . . , . = 1,43; ; f = 6,67 10-8 = 2,35 3 1 K = 1,16·1013 1 2 ( /( 2 ); R = 8,31436·107 p = K ). ( ) . 42 3 : Mo = 1030 ; /( ); . 2.1. 1 ( ) , 50 1 ( 2, 2 . 2.1) 40 , 30 . . 2.2 . 20 . 2.3 3 , 10 t = 2.5 4 0 . 0 0.5 1 1.5 r ( 3 . 2.1. 4, . 2.1) . , ( . 2.4 , r 0.62). , , . 65 60 55 50 45 40 35 30 25 20 15 10 5 0 0 1 2 3 4 5 6 t . 2.2. 43 50 1 40 30 2 20 10 0 0 0.25 0.5 0.75 1 1.25 1.5 r . 2.3. 50 40 30 20 10 1 0 3 0 0.5 1 r . 2.4. 44 1.5 3. , , , . : 2 c2 G G G , c – ; , , R0 – R0, G – . , . , G R0 = 2,33·1012 . . . Rn = Rn - R0 , - , . , . [2,3] . . , , . . 3.1 ( G) ( Rn), . Md G(r) 0,096M s , 0,25 s , 0,667 s , s , G r, , ~ R . > R G n G n . , , [11], . Rn , , , G – . . Rn , G . > , , d . Md 0.096 M S ; d 0,667 M S , 0,25M S ; , , . . , , [10, 11]. . . . [11] , , , . , [11], , . , – . , 45 [cm] . 10 16 10 15 10 14 10 13 , , . , : . G Rn, 3.1. > . 10 13 10 14 r . - 3.1. [cm] G . Md ( Rn(r)): 0.096 M S ; – – , d d – 0,25M S ; 0,667 M S ; – Rn(r). . , . , , . [7], . , . -1000 . . . , . [2, 3] . , . . 46 1. . . », 2. 1, 25 « 1.1.2, ., 2005. 1, , 25 « 1.1.2, ., 2006. . , . . 3. . . , », , . . . 4. . . , 2006, 70. . . 18 », ., 2007. 5. . ., « 6. 7. 8. . . , . , . // », 2008, . 297-316. . .: 2D . ., 1989. . . 1, , . .( .- . . 1.1.2, , . . . ). ., 2005. . . 18 « », 1.1.2. , ., 2008. 9. . . . ., 1950. 10. Ebert R., Habilitationschrift, Un. f. Frankfurt-am-Main, 1964. 11. ., . // . ., 1972, 49, 1, 157. 1, 47 : : . , . . . , . , . , . , . . 1995 . [1], , [2]. . [2]. , , , , . , . , . , , , , , [2]. , , . , , , , , , . N . [2]: f (r, r ) m2 a2 a r — 13 1 r r a r 2 . (1) , , ; a , , — . r , 13 , ; 13 [4]. (1) . * 48 . * , , (1), : 3 * a . m 2 11 (2) . – . [2,3]. .1 2 , 2006-2008 . , ( , ) ( .1). .2 . . 1. – 20 000 . 400 . [3]. . 2. . 20 000 . [3]. 49 , , , . , . . . 2009 , . -100 . . 1. . , . , , v i 1 r i 1 v i r i V i R i ( Fs v i 1 i : i Fp ) m i t V t, 1 (3) t, r i , vi – , R i , Fs Fp – , m– V– , , t– . 2. , 150 , 350 . , . 6300 , . ( ), . , , , , . , . , Pm Nm , M m – , 50 , N – , M – . PV h R PV , PV Na 3 , R3 , a – R– . . hR , . Pm , Pm 0.00134 PV PR , PV 3 PV . 10 3 12 10 15 . N aR. , , ( .1). . , h1 : R- 0.167 R h2 . 0.036 R – PR . Pm . 500 * . , [2]. , . 1. . # Pm PR 1 2 3 4 0.01 0.01 0.0005 0.01 0.144 0.108 0.144 0.144 * 0.02 0.02 0.02 0.01 .3 ( .3 3 1 3 .1). ( , ), . 51 ) ) . 3. 1 ( . ) , 5, . .4 . 1, 2 PR Pm 3 .3 ,3 .3 . , 3 1 PR , , . 3 . , , . Pm . . 3a 3 , , , . . ) ) ) . 4. . PR , 3( 2( 1 ( ) Pm , ) ). 3. . . . .5 52 2 1 , . . , [3]. vrand 0 ( 100% .1). , , . , , 104 . .2 , , , .2 .5. 3 . , . , , , . . ) ) . 5. 1 . . 3 3 0 0.9 s , vrand 0.9 0 s . 0.55v s . , vrand 0.7vs . , , .1 [3] 4. -100K . 5 . . . , – . . 95% . , . . , , 53 , . , , . N , N P , P– . , . , . , , , , , , . , , , . . . , 0.5 N P ), ( , . , . , , , . , , . . , , . . . . , . . 2 «nbody-4», -100K . , , 5 6 . 54 2. «nbody-4» -100K , ts -15000. N «nbody-3» , , P , tp , ts P N , Np , Kp N P . . NBody-3 (2007 NBody-3 (2007 NBody-3 (2007 NBody-3 (2007 NBody-3 (2007 NBody-3 (2007 Nbody-4 (2009 Nbody-4 (2009 Nbody-4 (2009 Nbody-4 (2009 Nbody-4 (2009 Nbody-4 (2009 Nbody-4 (2009 Nbody-4 (2009 Nbody-4 (2009 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) 0.75 0.75 0.75 0.75 , Cluster. 0.75 , Cluster. 0.75 , Cluster. 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 , Cluster. 1. N ts , P Kp Np 1M 1M 1M 1M 1M 1M 1M 1M 1M 1M 1M 1M 10M 10M 1M 10 8 6.8 75 55 40 70 8.9 4.63 2.5 1.37 0.98 13.4 6,7 6,9 16 32 64 16 32 64 1 8 16 32 64 128 128 256 64 76% 47% 28% 71% 49% 33% 100% 98% 94% 87% 80% 56% 62.5K 31.3K 15.6K 62.5K 31.3K 15.6K 1000K 125K 62.5K 31.3K 15.6K 7.8K 78K 39K 15.6K BH .« », ( . 2. . . ), ., 3. . 0.1600 0.2560 0.4352 1.2000 1.7600 2.5600 0.07 0.071 0.074 0.08 0.088 0.125 0.17 0.17 0.44 -15000 -15000 -15000 -15000 -15000 -15000 -100K -100K -100K -100K -100K -100K -100K -100K -100K » . .: « , 1995, .8-45. ., ., », , 11, 2005. . « . ., , tp , . . ». « », , 4. , 2008 ., ., . : . . ,1992, 296 . 55 : : . . , , . . . , , . . , , . . , , . , . 2009 . , . Aurelien Crida Astronomy Meeting) 2008 . . JENAM (Joint European National 2009 . Crida, A. Solar System formation (2009), September 8-12, VIENNA, AUSTRIA Abstract. In this review, three major changes in our understanding of the early history of the Solar System are presented. 1) Early differentiation: A few recent results support the idea that protoplanet formation and differentiation occurred partly simultaneously than CAI formation. First, some iron meteorites, eucrites, and angrites older than the chondrules or even than the CAI have been found. Second, iron meteorites could be debris of early disrupted differentiated planetesimals, scattered from the terrestrial planet region to the Main Belt. Finally, chondrules contain fragments of planetesimal material. 2) Earth and Moon: An equilibration mechanism explains the identical Oxygen isotopic composition of the Earth and the Moon. In addition, it has been shown that the Earth and the Moon mantles have the same 182^W anomaly, in contrast to what was believed before. Consequently, the Moon forming impact should have occurred after the extinction of the 182Hf radioactivity, about 60 Myr after Solar System formation. This new datation is in agreement with new N-body numerical simulations of the last phase of terrestrial planets formation, in which giant impacts occur during about 100 Myr. 3) Giant planets and Nice model: The migration of the giant planets in the protoplanetary disc can be prevented if the planets are in resonance, close to each other. In the ``Nice model'', the 4 outer planets of the Solar System were in a compact configuration after the dissipation of gaseous disc. A few hundred million years later, a global instability drives the planets on their present orbits, producing the Late Heavy Bombardment. In this frame, a lot of characteristics of our Solar System can be explained. Comment: Invited review talk on Solar System formation, at the JENAM 2008 conference. Proceeding to appear in "Reviews in Modern Astronomy, 21". : , 56 , . .1990]). [ 80. . ( . . [ , 2005] . . -2009 ( , 2009), “Nice model” “Late Heavy Bombardment”, , “main stream” . , , , . 1. ( . : ) » (Late « Bombardment) 3.8-4 5 . 20 . “Nice model”, 0.5 , ., . 2. . : ( ), , , (100 ) , . 3. , , . 6 1027 , 100 , 2005]. , – [ 10( 21-22) , 4.4 . n(m) ~ m-1.6 ) , , . . , , , . . , ( ), , . , ( . ). . . 57 , , 5 15 ( [ ., 1990]. , ( ). [Collins et ., al, 2005]): Vm 0.25 vi2 8.9 10 Vi 12 E sin , m Vm – , Vi – m 1 – – (mv2/2, J), ,E– . , 4/5 e 7-8 1/5 , 4/5 . ) (100 4-5 . . , 4 , 1021 – 1022 . 3 2-3 !!!) 3 2 . , ( 0.55 , 3 . 0.3 , . 3 . , , ( ) , . , , , , , . , 1. Crida A. Solar System formation // Proceeding to appear in “Reviews in Modern Astronomy, 21”. http://adsabs.harvard.edu/abs/2009arXiv0903.3008C. 2. ., ., . : . .: , 1990. 296 . 3. ., . // . 1996. N 6, . 3-16. 4. Pechernikova G.V., Vityazev A.V. Statistical model of Earth Moon coaccretion and macroimpacts // XXVII Lunar and Planet. Sci. Conf., 1996. P. 1213-1214. 5. Pechernikova G.V., Vityazev A.V. Formation and composition of prelunar swarm in Earth Moon coaccretion model // Abst. Internat. Conf. "Planetary Systems the long viev", Blois, 1997. P. 56. 6. . // , 2005, . 401, 3, . 391-394. 7. Pechernikova G.V., Vityazev A.V. Origin of the small Solar System bodies // “Asteroid-Comet Hazard – 2009 (ACH-2009), St. Petersburg. ( ). 8. Collins G.S., Melosh H.J., Marcus R.A. Earth Impact Effects Program: A Web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth // Meteoritics & Planetary Science 40, Nr 6, 817-840 (2005). 58 1. 2. // 23 1. Pechernikova G.V., Vityazev A.V. Origin of the small Solar System bodies // “Asteroid-Comet Hazard – 2009 (ACH-2009), St. Petersburg. ( ). ., . « », 222008, . ., . // 2009 ( , 24-28 ) // ASTROKAZAN – 2009, Reports. P. 96-97. 2. Vityazev A.V., Pechernikova G.V. Origin of the small Solar System bodies (invited paper) //Book of Abstracts of Intern. Conf. “Asteroid-Comet Hazard – 2009 (ACH-2009), St. Petersburg. P. 10-13. 59 – : : . , . , .- . . . , . , . , . . 2009 . (1) : – . , “ ” . (2) (343 Ni ) – . , Ni- Ol – . . Fe-Ni Ni . LL. (3) (Ariskin et al., 2008; ., 2009; Bychkov et al., 2009), SCSS (Sulfur Content at Sulfide Saturation) – . “ ” . 1. 2007-2008 . , “ (Yakovlev et al., 2008), ” Fe-Ni ” ( ., 2008) , ( 60 . 100-150 ) . Ni (104-105), – “ ” , , – Ni . III (1200 ), 18 . .6 . ( ., . 10). . 1. 100.00 2600 III (12000C) METEOMOD-2009 METEOMOD-2008 80.00 2400 2200 T, 0C 60.00 Ni 2008; 2006-2008 2000 40.00 1800 20.00 1600 0.00 1400 0.00 5.00 10.00 15.00 , 20.00 25.00 0.00 5.00 10.00 .% 15.00 , 20.00 . 1. Fe-Ni “ (2008 .) ” ( 25.00 .% III ” (2009 .) 1200 - . . 6 P=1 ” - 0.5 “ . (2008)). .“ .%, log fO2 = -6.70. 2. Ni – – , ( ) – . 2008 . ( ., 2008; Yakovlev et al., 2008) , , 102-103 ppm. – , Ni . , “NiO” ” “Ni. . Ni , . “ ” – Ni- 61 , – . . . 25 343 , Ni . 1). , , . 1070-1600°C ppm 3 NiO .%. 80 ppm 1. N 1 Ehlers, et al., 1992 16 Hart and Davis, 1978 Kinzler, et al., 1990 35-100 .%, – .%. 40 Ni SiO2 Duke, 1976 Fo 26.5 - NiO # , °C * .%) .%) CMASFN 51.64 0.044 1150 428 47.97-59.27 0.008-0.343 1350-1275 26 20 Fo-Fa-AbAl Fo-Ab-An 46.59-68.76 0.120-0.680 1450-1250 399 10 CMASFN 45.20-58.10 0.210-0.540 1285-1200 130 Mysen, 2007 22 CMASFNK 44.11-66.16 0.300-0.520 1550-1450 881 Mysen, 2006 20 CMASF 37.72-46.54 0.070-0.680 1375-1300 940 Mysen, 2007 38 CMASN 44.30-62.50 0.190-0.720 1500-1350 5001 Mysen, 2008 28 CMS 49.75-60.24 0.430-0.940 1650-1510 5002 Takahashi, 1978 44 MSFNK, BAS 38.91-70.35 0.020-3.030 1500-1200 177 Agee and Walker, 1990 Arndt, 1977 9 8 KOM, PER 45.77-53.43 0.057-0.004 1600-1300 126 3 3 KOM, BAS 47.50-50.00 0.020-0.090 1470-1225 36 Bickle, 1978 Brenan, et al., 2005 8 6 5 5 KOM BAS 47.69-51.88 47.03-52.73 0.005-0.069 0.060-0.530 1570-1503 1345-1260 42 818 Canil, 1997 10 5 KOM 49.87-53.08 0.010-0.050 1425-1225 389 Canil and Fedortchouk, 2001 Canil, 2002 6 4 KOM, BAS 47.20-51.90 0.010-0.160 1375-1175 594 12 7 PER 47.60-52.30 0.010-0.280 1375-1300 657 20 18 KOM, MET 49.10-61.60 0.003-0.176 1350 455 16 MET 34.20-40.60 0.150-0.440 1325-1139 202 1 MET 43.49 0.017 1275 70 Gaetani and Grove, 1997 Jurewicz, et al., 1993 Mysen and Kushiro, 1976 Nabelek, 1980 8 1 5 4 BAS 49.30-50.00 0.013-0.038 1265 214 Parman, et al., 1997 4 4 KOM 50.30-52.00 0.030-0.160 1435-1250 398 Righter, et al., 2004 4 ANK 44.59-47.09 0.060-0.860 1300-1264 734 Snyder and Carmichael, 1992 21 BAS, ANB 42.90-54.60 0.042-1.400 1290-1120 136 62 1 Tuff, et al., 2005 5 3 PIC 49.03-51.34 0.010-0.060 1350-1125 827 Wang and Gaetani, 2008 13 5 BAS, ECL 47.07-62.81 0.018-0.491 1325-1200 5000 N* - , Ni-Ol . : S - SiO2, A - Al2O3, F - FeO, M - MgO, C - CaO, N - Na2O, K- K2O. , Beattie et al. (1991) . , 35 > 1 Fo .%. 34 NiO . 2). 1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.2 0.4 ) . .%, 1 NiOOl wt% (Wang&Gaetani,08) NiOOl wt% (Beattie et al.,91) ( ) – Fo 0.6 0.8 1.0 26 36 42 70 126 130 136 177 202 214 389 398 399 1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.2 NiOOl wt% (exp) . 2. (Beattie et al., 1991; Beattie, 1993) Ni- 428 466 594 657 734 818 827 881 940 5000 5001 5002 5003 0.4 NiO Ol 0.6 0.8 1.0 wt% (exp) NiO , (Wang&Gaetani, 2008) . – Ni- : NiO (L) + 0.5SiO2 (L)= NiSi0.5O2 (Ol), : ln K = aOl(NiSi0.5O2)/ [aL(NiO) [aL(SiO2)]1/2 . lnK (2000) ln K = a/T + bln RL + c, RL – . lnK ( , Ni . (1) (2) : (3) , a, b . 3, ). c – .3 63 4.0 NiOOl wt% (calc) ln K(NiSi0.5O2) 3.0 2.0 1.0 0.0 428 466 594 657 734 818 827 881 940 5000 5001 5002 5003 26 36 42 70 126 130 136 177 202 214 389 398 399 1.0 ln K = 9908.45 / TK - 4.80 0.8 0.6 0.4 0.2 -1.0 0.0 4.0 5.0 6.0 7.0 8.0 0.0 0.2 0.4 0.6 0.8 1.0 NiOOl wt% (exp) 104/TK . 3. NiO Ni-Ol – ( ) ( ) Ni- . NiO 4- Ol (Mg, Fe, Ca, Mn) 5- , Ni . , Fe-Ni Ni . . LL ( . 4 5). , , 1820 ( 1580 ( IW+2). 1900 T, C 1900 1800 Met 1800 Met 1700 1600 1500 1900 IW+2.0 IW 1800 1700 IW) 1600 Met+Ol 1600 Met + Ol 1500 Met + Ol 1400 1300 Met+Ol+Opx 1200 0.00 1.00 2.00 3.00 4.00 , Met+Ol 1500 1400 1300 Met 1700 Met + Ol 1400 1300 Met+Ol+Opx Met+Ol+Opx 1200 1200 0.00 0.50 1.00 1.50 2.00 2.50 0.00 .% NiO , .% Ni 40.00 80.00 , . 4. LL . LL St.Severin (SiO2 – 40.6, TiO2 – 0.11, Al2O3 – 2.37, FeO – 25.9, MnO – 0.32, MgO – 25.2, CaO – 1.92, Na2O – 1.0, P2O5 0.22, Cr2O3 – 0.58, NiO – 2.0 .%). : – IW, – IW+2. – , 64 . 4 (IW) , ( ) .% IW+2. – ( NiO . 4), ( . 4). , “IW+2” , IW. 3. , FeS (Ariskin et al., 2008; ., 2009; Bychkov et al., 2009). (Sulfur Content at Sulfide Saturation) SCSS – ( . , ) . Ni – . – . 5 SCSS LL FeO . . 1900 1800 1900 IW+2.0 IW T, C 1700 1800 1800 Met 1700 Met 1600 1700 1600 Met+Ol 1500 1500 1400 1300 1900 1600 Met+Ol 1500 Met+Ol 1400 1300 Met+Ol+Opx 1200 Met+Ol+Opx 1300 1200 1200 0.00 0.10 0.20 0.30 0.40 0.00 1.00 2.00 3.00 4.00 10 14 18 22 26 30 FeO*, 1400 .% SCSS, .% NiO , .% . 5. LL . LL St.Severin (SiO2 – 40.6, TiO2 – 0.11, Al2O3 – 2.37, FeO – 25.9, MnO – 0.32, MgO – 25.2, CaO – 1.92, Na2O – 1.0, P2O5 0.22, Cr2O3 – 0.58, NiO – 2.0 .%). : – IW, – IW+2. 65 ., ., . . ). .: ., : ., ., .“ ”( “ ., . ”. 2008. . 345-364. . (2009) : III . .“ ….” ( , 2009). . 1. . 96-99. Ariskin A.A., Bychkov K.A., Danyushevsky L.V., Barmina G.S. (2008) A model of S solubility in basaltic melts at 1 atm. Geochim. Cosmochim. Acta. V. 72 (Suppl. 1: Abs. 18th Annual Goldschmidt conf., Vancouver, Canada, 2008). A31. Bychkov K.A., Ariskin A.A., Danyushevsky L.V., and Barmina G.S. (2009) Testing of sulphide solubility models and calculations of SCSS during crystallization of mafic magmas parental to layered intrusions. Northwestern Geology. V. 42 (Suppl: Proc. Xi’an Intern. Ni-Cu (Pt) Deposit Symposium 2009). P. 15-19. Yakovlev O.I., Ariskin A.A., Barmina G.S., Bychkov K.A. Modeling Fe-Ni metal and silicate melt compositions produced by thermal reduction of nebular condensates above the liquidus // Abs. Annual Goldschmidt conf. (Vancuver, Canada). 2008. 66 : : . , . . , . . , . . 1. ( ) ) , ( , . , , . . , . 4 . . « ». , Fe-Al-Si-Ti-P-C-S-N) , 113 . (H-O-K-Na-Ca-Mg19 14 , . HCh (GIBBS) , , . , , . » (Eh, pH, , , - « ) , , . . , 2. « » , (K/Na n) 10-5-10-7 . 67 « » K/Na 25oC. , CO2 n×10 K/Na CH4 , . , CH4 CO2 , 10%. NH3, NH4+, N2 , N2, H2, CO2, CH4, NH3, H2S. P CO2=10 10 , P CH4 = 10-8 10-5 .1 ( K/Na – lg P CH4 – lg P CO2 -7 1 lg P CH4 – lg P CO2) P CO2 = 10 , P CH4 = 10-6 1 K/Na 4-14, K 0.1-0.3 m, Na 0.05-0.1 m, Mg 0.01 m, Ca 0.05-0.1 m, + -3 -9 2.10 m, P(V) 5×10 m, pH=8-9, Eh=-450 50 (NH4 +NH3) 25 . -5 -8 lg P CH4 K/Na -8 12.00-14.00 10.00-12.00 8.00-10.00 -6 6.00-8.00 4.00-6.00 2.00-4.00 -4 -9 -8 -7 -6 -5 -4 0.00-2.00 -3 lg P CO2 . 1. K/Na » 68 « , 25 . 2. K/Na ( .2), . 2. K/Na, ( ), . ,3– : 1, 2 – , : , – , – . – , , – – 3. , , – – – – , , – . « » (V), 0.0071 (III), (III) (V) 1e-60 0.0070 1e-70 0.0069 1e-80 -12 -10 -8 -6 -4 -2 lg P H2 » . 3. 25 (V) P(III) « , (QFM). . H-O-C-N-P 25 . : H2, O2, N2, H2O, CH4, CO, CO2, N2, 69 NH3, H3PO2, H3PO3, H3PO4, H4P2O7. , , , . P, N, C H2P2O72-, HP2O73- , , 4 ( , ( PH3. P, N, C ( .3.1). .), P(V) H2>7), +H2=HPO32-+H2O (pK=7.06). pH=4-6. ( H3PO4+H2=H3PO3+H2O (pK=8.52) NH4+ pH>9 PO43HPO42.3.1). 3.1. (O/P<4) H-O-C-N-P 25 (f H2 CH4 CO CO2 N2 NH3 70 N 9.98×10-1 ; C+N+P 1 +2 P O N PH3 HP2O72H2PO7NH4+ 2) 1 ; C+N+P 1 +3 P O N H2P2O72HP2O73PH3 NH4+ 2) 1 N 9.98×10-1 2.86×10-85 2.30×10-3 1.72×10-30 1.06×10-27 2.54×10-18 1.21×10-6 (f H2 1 N 9.98×10-1 2.28×10-3 2.52×10-41 2.28×10-49 7.74×10-16 2.11×10-5 (f H2 O2 CH4 CO CO2 N2 NH3 2) N 9.98×10-1 1.9×10-3 5.18×10-42 1.10×10-50 1.65×10-13 3.09×10-4 (f H2 CH4 CO CO2 N2 NH3 .), ; C+N+P 1 +4 P N H2P2O72H2PO4HP2O72H3PO4 NH4+ 2) 1 ; C+N+P 1 + 10 P H2PO4- O M 53 35 1.7 1.6 148 O M 5.9 , (lg f HPO42NH4+ 4.83×10-84 2.30×10-3 7.10×10-30 1.79×10-26 6.11×10-19 5.94×10-7 O2 CH4 CO CO2 N2 NH3 (f H2P2O72HP2O73H3PO4 NH4+ 2) 1 ; C+N+P N 9.98×10-1 7.54×10-84 2.30×10-3 8.87×10-26 2.79×10-26 1.55×10-20 9.46×10-8 H2 O2 CH4 CO CO2 N2 NH3 1.4 0.1 0.1 9.0 1 + H2O 1 P M 1.0 0.01 0.006 0.005 1.1 H2PO4H2P2O72H3PO4 HPO42NH4+ 4. : ( 1999a, 2006), 90, , “Treatise on Geochemistry”, 2003, vol. 1, 4; Mottl et al., 2007). (Drake, ampins, 2005; .), ( , Delsemme, 1999, – , – (Delsemme, 2006; .). ., , . : 1. , – , ( , ). 2. 1 . . 3. , – . , . , . 71 ” , (Pepin, 1991; Tolstikhin, O’Nions, 1994; Daupas et al., 2003; Porcelli, Pepin, 2003; 1. ( Xe/Kr – Xe 2. .): 30%). .) 129Xe, (7% . . – , – , ( ., 2009): Ne 35-40 50 3-5 30 , ( ), . , (Mottl et al., 2007; ( , ., 2009) .) . , , (Porcelli, Pepin, 2003), . ( Xe , , - Daupas et al., 2003) Xe , , , >99%, Halliday, 2003). , ). 2003, ( , 85% - Porcelli, Pepin, , , ( , ( , ), , , . ( ) . 129 – Xe . 129 129 . Xe I (Drake, , 35 15.7 , , 129 , ( ). – Mottle et al., 2007). I, ampins, 2005) , , . 129 (Porcelli, Turekian., 2003; , , . , , , , ! , 72 Xe , . , , . ( 129 Xe). , . . (Bockelée-Morvan et al., 2005; Jehin et al., 2009). , . , “ ” . . ( !) . , 2003; Drake, ampins, 2005; (Halliday, .). , , ( . 1). , , , . . 1. . (-80‰). , , , (McKeegan, Leshin, 2001; .). , , . 2. . Bopp ( – Halley, Hyakutake , . 1), Hale- . , (Delsemme, 2006). , Horner et al., 2007) , . , (Delsemme, 2006) , , : , – . , , , . . UV( . . 1) , . 4.1. al., 2007), IR- . (Mottl et . D/H, 10-6 25 D, ‰ -871 : 150 120 300 -229 +7 +920 73 : 1P/Halley C/Hyakutake C/Hale-Bopp C/2001 Q4 (NEAT) C/2002 T7 (LINEAR) 8P/Tuttle 149 0 308±50 290±100 330±80 460±140 250±70 409±145 +1067 +1054 +1214 +2087 +678 +1745 Jehin et al., 2009 “ Villanueva et al., 2009 , , , – , . , ( ., 2009). , Stardust Deep Impact. 3. . Hale-Bopp ( Ne, Kr Xe ) (Bockelée-Morvan et al., 2005). Ar – Ar/O 1.8 – – 10% , , . Ar , (46 10-4). LINEAR 2000 WM1 LINEAR 2001 A2 Ar . , , , . , , , , , . ampins, 2005) (Drake, . , , . Ar – 50% – 50% Hale-Bopp, . , , , , 2400 . - , . Hale-Bopp , , , 74 . , , (Daupas et al., 2000), , 0 0.1. , . , . 85% - Porcelli, Turekian, 2003) ( . 5.1 1021 : 78% , 4.6 1021 ( .4.2). , NH3 N2. (Bockelée-Morvan et al., 2005), , 0.5% 1.5%. , (Delsemme, 2006) (Bockelée-Morvan et al., 2005) 2.6%, . .4.2). ( , , . . 4.2. , , 2-17 . 4.2. , . 78 85% 5.1 1021 3.98 1021 Mottl et al., 2007 1.621 1024 8.11 1021 Mottl et al., 2007 .% , (Bockelée-Morvan et al., 2005) – 0.5% 6.8 1022 – (Delsemme, 2006) 4.1% – . – (6 – 50 %), . . , . , , . 75 , . , . , , , – . ., ., ., . . . ., , 2009, 576 . Bockelée-Morvan D., Crovisier J., Mumma M.J., Weaver H. A. The Composition of Cometary Volatiles. // In “Comets II”, Univ. of Ariz. Press, eds. M. Festou, H. U. Keller, and H. A. Weaver, 2005, 391-423 Brownlee D.E. Comets. // In “Treatise on Geochemistry”, 2003, vol. 1, 663-688. Dauphas N. The dual origin of the terrestrial atmosphere. // arXiv:astro-ph/0306605v1 28 Jun 2003. Dauphas N., Robert F., Marty B. The late asteroidal and cometary bombardment of Earth as recorded in water deuterium to protium ratio. // Icarus, 2000, vol. 148, no. 2, 508–512. Delsemme A.H. Cometary origin of the biosphere. // Icarus, 1999, vol. 146, no. 2, 313– 325. Delsemme A.H. The deuterium enrichment observed in recent comets is consistent with the cometary origin of seawater. // Planetary and Space Science, 1999a, vol. 47, no. 1-2, 125– 131. Delsemme A. The origin of the atmosphere and of the oceans. // In: P.J. Thomas et al., “Comets and the Origin and Evolution of Life”, 2nd ed., Adv. Astrobiol. Biogeophys., SpringerVerlag, Berlin – Heidelberg, 2006, 29–68. (.pdf) Drake M.J., Campins H. Origin of water on the terrestial planets. // In “Asteroid, Comets, Meteors”, Proceedings IAU Symposium No. 229, 2005, 381-394. Hallidey A.N. The origin and earliest history of the Earth. // In “Treatise on Geochemistry”, 2003, vol. 1, 509-557. Horner J., Mousis O., Hersant F. Constraints on the formation regions of comets from their D:H ratios. // Earth, Moon and Planets, 2007, vol. 100, no. 1-2, 43-56. Jehin E., Manfroid J., Hutsemékers D., Arpigny C., Zucconi J.-M. Isotopic ratios in comets: Status and perspectives. // Earth, Moon and Planets, 2009, vol. 105, no. 2-4, 167-180. McKeegan K.D., Leshin L.A. Stable isotope variations in extraterrestrial materials. // Reviews in Mineralogy and Geochemistry, 2001, vol. 43; no. 1, 279-318. Mottl M.J., Glazer B.T., Kaiser R.I., Meech K.J. Water and astrobiology. // Chemie der Erde – Geochemistry, 2007, vol. 67, no. 4, 253-282. Pepin R.O. On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. // Icarus, 1991, vol. 92, 2-79. Porcelli D., Pepin R.O. The origin of noble gases and major volatiles in the terrestrial planets. // In “Treatise on Geochemistry”, 2003, vol. 4, 319-347. Porcelli D., Turekian K.K. The history of planetary degassing as recorded by noble gases. // In “Treatise on Geochemistry”, 2003, vol. 4, 281-318. Tolstikhin I.N., O’Nions R.K. The earth’s missing xenon: a combination of early degassing and of rare gas loss from the atmosphere. // Chemical Geology, 1994, vol. 115, 1-6. Villanueva G.L., Mumma M.J., Bonev B.P., DiSanti M.A., Gibb E.L., Böhnhardt H., Lippi M. A sensitive search for deuterated water in comet 8P/Tuttle. // Astrophysical Journal, 2009, vol. 690, no. 1, L5-L9. . 76 : : . , .- . . . , . , . , . , . . 2009 « » . : K/Na (1) (2). 1. K/Na - ( 2008; , , , , 2008) » , , , . , , , K/Na 1 , . GEOCHEQ ( ., 2008). SUPCRT92) ( ( ( 15° , 0.1. , , 1 10, 1 – 100 . ( 1.3). .1.1). ). .1.2, , , . 77 . 1.1. . , . , , . , , ( 1.6). , .1.4, 1.5, pH, . , , ( , ) , . . . . 1.2. 78 W/R = 10 . 1.3. W/R = 0.1 . 1.4. W/R = 10 . 1.5. W/R = 1 79 . 1.6. W/R = 0.1 , ( .1.7, 1.8). , . , , , ( .1.9, 1.10, 1.11). . . 0.1 . . . 2009 , , K Na , . 0.1 t = 44.5 - 52.7 , (K/Na < 1). K/Na . , , 1 ( , W/R = .1.11). , K/Na . , : Na- . 80 . , . 1.7. W/R = 10 . 1.8. W/R = 0.1 . 1.9. W/R = 10 81 . 1.10. W/R = 1 . 1.11. W/R = 0.1 , K/Na , , . , , 2. ( 2007) , , , , (3.2 G ) , . 82 , , « » .2.1). , ( . 0.05* . 40 000 , . - 15° . . 2-1 0.016**. 2.1, 2.2, . 2.2, 2.3) , , , . 2.1. . ) . , , (140 % ) 6.75 . 2.1. , 7 41.06 7.83 7.55 1.57 6.73 15.70 0.72 0.13 0.62 17.86 48.76 9.36 3.07 8.04 21.65 8.05 0.90 0.16 0.00 0.00 SiO2 Al2O3 Fe2O3 FeO MgO CaO Na2O K2O H2O CO2 .% 35 57.24 10.58 11.60 0.44 6.90 3.68 0.38 0.17 2.41 6.20 100 74.27 7.72 12.83 0.0008 0.47 1.15 0.30 0.22 3.04 0.00 2.2. , 7 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.60E-02 0.00E+00 2.62E-01 K Mg Ca Al C Si S * 2000 98.33 1.13 0.001 0.00 0.005 0.10 0.003 0.24 0.20 0.00 5.86E-04 3.86E-01 1.44E-03 2.49E-09 7.55E-02 1.45E-03 2.54E-01 35 4.35E-09 2.77E-01 9.91E-02 1.20E-02 5.82E-02 7.21E-06 2.61E-01 H2O 100 2000 1.58E-05 9.86E-04 3.13E-04 4.97E-03 4.69E-02 1.45E-03 2.62E-01 1.43E-05 1.59E-05 3.00E-06 1.07E-04 4.69E-02 1.45E-03 2.62E-01 - Geocheq. , ; ** ), , 0.05 1000 ( 1 . 83 3.60E-06 2.60E-01 8.54E-07 0.446 3.56E-04 2.60E-01 1.22E-02 0.491 4.01E-03 2.59E-01 5.70E-04 5.446 7.80E-03 2.59E-01 5.82E-03 5.857 0.00E+00 2.60E-01 0.00E+00 0.445 Na Cl Fe pH , 73 % . , , 3 : 1. , )( 7 , , ( ); 2. , , , ( , , ) (7 - 50 3. ); , , , ( ) (50 - 2000 ). 2000 , .%) (3.3 (96.4 .%). ( , , . , , 1974). 2.4 2.5 , , K/Na (>1). . 2.2. 84 . 2.3. . 2.4. W/R = 10, K/Na = 45 . 2.5. W/R = 0.1, K/Na = 6.8 85 2009 , , K/Na . 2009 « »( ., , 2007, 18 . ., ., . 2008. . 421. 3. . 375-377 ., . ., ., – , . K/Na- ) , // , ., » ., , 1974, 272 . . GEOCHEQ_M – . 2008 . . 2008. 1(26). URL: http://www.scgis.ru/russian/cp1251/h_dgggms/1-2008/informbul-1_2008/mineral-22.pdf ., ., ., (K/Na) // : . URSS. . 2008. .403-409 ., ., // , . 86 : (U-TH-PB, HF, O, REE) : : .- . . , . , . . .- , . . . , . , . , , , . , , , . . . , , ( , ( 4.0 3.0 . . . ) , ), . , (4.5-4.0 . , . , ), , 4.0 . . . , 4.0 . , (Amelin et al., 1999, Valley et a., 2006). . , (Peck et al., 2001). 18 , , 18 +5.5±1‰. . ( ) 87 18 4.4 , 10‰, , . , (Mojzsis et al., 2001, Harrison et al., . 2008). , (Nemchin et al., 2006) , 4.0 18 . 6-7‰, . . (Wild et al., 2001; Valley et al., 2008) , . , , Sm-Nd , , . , , . ( ) , , , (Darling et , al., 2009). , . . , . 3.5 . 3.9 . . . , , , . : , , ( ). 3.3 . , . , 3.6-3.7 - . , , , , . . 88 , - , . . N I II III IY Y YI 1 88-305, 88-306 2 6 4 3 84-328, 84-330 5 1 2 7 8 3 9 5 4 6 7/11, 7/12 92-218 10 .. .1; 2-3 258- ,3;6- : ;4;7- ( ;9. 3- , 5- , 6, II- - I, IY- , , , III, YI - , Y- ( ) . ; 10 ,2- : 1- , 4: ); ; - . , , . , 1,5 , , . 35 , – 1.2 . . , , . , , , . . , ( ) ( ). 2,83 . , . U-Pb . U-Th-Pb CAMECA 1270, NORDSIM, , . - Triton. 147 Sm/144Nd 0.005% Sm 143 Nd/144Nd. Nd 150 Nd + 149 Sm Nd/144Nd 0.1% 143 89 148 Nd/144Nd 0.241572, DM) [18] 143 Nd/144Nd=0.513151, 147Sm/144Nd=0.212. 146 Nd/144Nd = 0.7219. : 4 . . ( 7/11, 5/88) (92-218) CU-1), . . 1000 7-11, 7-12, 5-88, 100 92-218, >3.0 . [20] 10 1 Ba Th K Nb La Ce Sr Nd Hf Zr Sm 1000 Eu Ti Dy Er Yb Lu PAAS >3Ga 7-11, 7-12, 92-218, 100 5-88, 10 1 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu . 2. , , (LaN/YbN 17 , 32) . Cr/Ni, Co/V , . , , , . , , , – , . NORDSIM, . 90 207 110 , Pb/206Pb. . – , U-Th-Pb , . CU-1+7/11+5/88 zircons from metasediments Soroki structure 0.8 3800 3000 0.6 Pb/ 238 U 3400 206 2600 0.42200 0.2 5 15 25 35 45 207 Pb/235U 6 CU-1+7/11+5/88 Concordance higher than 10% Number 5 4 3 2 1 0 3100 3200 3300 3400 207 3500 3600 3700 3800 206 Pb/ Pb . 3. 40% , 0.7. ppm Th/U 3500 3700 . ( . 3). 3784 . 150- 320 ppm, 3.5-3.6 . Th/U 0.5. – 3.2-3.3 . . 3.3 . , 0.5-0.7. . , 5 0.4100-200 . . 100 ppm, , Th/U , . 91 Sm-Nd , 3.2 . , 3.42- . [Sm] , ppm [Nd] 147Sm/144Nd 143Nd/144Nd ±2 T(DM), Ga 2.9 2.1 2.2 18.5 13.1 13.7 0.0953 0.0972 0.0985 0.510626 0.510589 0.510584 0.000012 0.000008 0.000005 3.28 3.38 3.42 7/12 7/11 , ( ) . Cr/V, Ni/Co. - Nb , . , , ( ), , , , Eu Nb. , .. PAAS, , . , , 3.3 . . , , . 3700-3800 . . . , , 3680- 3400 , . 39 -0.9%. CU1 3785±2 50% . , , 207 3685±6 . Pb/206Pb. . 3570 . . , . 3300 92 . . 3200-3300 , , . . . Th/U , , . , , , , , TTG, , , , , – , . , , . , , . , . , 2 « 2 » American Journal of Science, in press. 93 , : : . , . . . , . , . . ( ), (FeNi) ( (FeS) ). , ( , , 1995, 2004). , , , . (~5%) FeS (95%Fe, 5%S). (5%S . Fe), . , . , , , , 1975; ( , 1975; , 1982; , 1995). , 1998, 2004; , 85 .% Ol, 10 .% Pic, 5 S (95 . % Fe 5 .%S), 94 ( , 1995, , 1995, 1997). ( .% Fe, ) 5 .%S Fe, , 1995, 1998, 2004). : Fe- : 85 .% Ol, 10 .% Bas (+10%FeO), 5 .% Fe-S (95 . % Fe 5 .%S), Ol- , Pic- , Bas- , , Fe- , Fe-S (95 . % Fe 5 .%S) . -85/1) - . ( -85/1): SiO2-41.10; MgO-48.58; FeO-10.26; CaO-0.08; -85/2) - . ( -85/1): SiO2-42.87; MgO-53.56; FeO-9.51; CaO-0.09; 349 ( , ): 349 ( , ): SiO2-45.60; TiO2-0.82; Al2O312.70; Fe2O3-2.15; FeO-8.19; MnO-0.19; MgO-18.17; CaO-10.56; (TRV-158, High-Ca boninite from Sous Troodos) (TRV-158, High-Ca boninite from Sous Troodos) ): SiO2-49.62; TiO20.17; Al2O3-8.75; Fe2O3---; FeO-7.96; MnO-0.15; MgO-17.61; CaO-8.76; , ) ( , ): SiO2-52.5; TiO2-0.85; Al2O3-15.16; Fe2O34.48; FeO-5.16; MnO-0.10; MgO-9.49; CaO-9.29; – FeS2. « 3-5 », 98 % 4 .% (96% Fe 2% ) , 30-50 ,( ). , 5% ( ) . Fe-Ni . , .4, b. . 1, a, b CS-97 CS-110, CS-122, CS-123, CS-126 . 3,a,b,d. CS-78, . 2,d. CS-97. : 85%Ol; 10% Bas (+10%FeO); 5%Fe (+2%C); 5%S Fe o (95 .%Fe 5 .%S); g=4000; T=1480 C; t1=10 ( ); t2=5 ( ). . log 2 = ~ -11,5. , , . , , . , » ( . 1, ), . ( = ~1480 ), , , . 3, . 95 . FeO . 20%, , 2% . , , , . 1. CS -110. : 85%Ol; 10%Bas(+10%FeO); 5%Fe(+2%C); 5%S Fe (95 .% Fe 5 .%S).; g=4000; T=1460oC; t1=10 ( ); t2=5 ( ). ZrO2. log 2 = ~ -11,5 « , , . ( = 1460 ), , , . 3,b. , ZrO2 , , . 1. , , , . CS-122, CS-123, CS-126 ( . 3,a,b,d) , , =1440 . . , . CS-78 ( . 2,d) . . , . . . . , , Si P. . . , . . . , , . 10% ( 1012 . ) log = ~109-~40%FeO, , log (log = ~ - 2-3.10-2 )( log !!!) S, P, Si, . 4, . = ~ 2.10-1 . , . , , . 1, ; . 3,d. . , . . , . 96 - . « , ». . . . . , ), , , , , , . 1. MgO ~20-40% FeO. , , , . » . , , , MgO, FeO, Al2O3, SiO2 Al2O3 , ZrO2, . , , , =1400-1440 ), ( .) (10%) 1480 , , FeS (95 =1421,9 . (20% FeO) log .% Fe . 5 , ( =1460-1480 ), ( . 4, ) .%S) =1430 , . =14602 = ~ -11,5 . 97 1. SC -58, SC-97, CS-103, CS-110 , CS-120 : SC-47, SC-53, . . =1400 . c- - . - - 0.0142 0.4560 0.1817 0.1270 0.0004 0.1056 0.0082 0.0003 0.1034 0.0019 0.0000 0.0000 0.00427 0.67993 0.08663 0.14191 0.00464 0.10957 0.00145 0.00000 0.00405 0.00115 0.00083 0.00090 - 0.01209 0.60433 0.08778 0.13082 0.00160 0.12223 0.00584 0.00037 0.07458 0.00353 0.00262 0.00004 0.01045 0.43935 0.15657 0.22896 0.00143 0.06624 0.00510 0.00000 0.10894 0.00250 0.00256 0.00000 SC-97 CS-120 ZrO2 CS-110 0.0079 0.5781 0.1659 0.1171 0.0033 0.0737 0.0038 CS103 (Fo) 0.0009 0.4385 0.1144 0.2747 0.0002 0.1546 0.0077 0.0016 0.0036 0.06 0.0061 0.0010 0.0008 95.54 99.89 0.0129 0.5473 0.0801 0.1162 0.0033 0.1345 0.0061 0.0022 0.0888 0.0031 0.0016 0.4741 0.1812 0.0750 0.0419 0.0076 0.0017 1.03535 SC-97 CS-110 CS-103 (Fo) 98 - - - SC-53 SC-47 2.46 52.5 9.49 15.16 0.89 9.29 0.85 0.13 9.64 0.10 - - SC -58 Na2O SiO2 MgO Al2O3 K2O CaO TiO2 P2O5 FeO MnO Cr2O3 NiO WO3 ZrO2 - 1.04582 1.02210 20 % FeO ( 99,94 ) 30% 85% 99 100 : : . , . . , . . , . . 2009 : « in situ . , Eh « – ». » 150° . - - 25 , . K/Na ( 2). NH4NO3 ( ): K 0.029-0.059, Na 0.024-0.036, Ca 1.41-10.34, Mg 3.33-5.74, .)= 0.7-1.1, pH=6.73-7.88. 2009 « » 150 ( .1, . -Eh , . 2 2. , H+, K+ Na+. – Ag, AgCl/ 3M KCl, , « » . ( 3836) , ( ). ( 4021) , , ). ( – . 3836) , ( . 4021), ( . 1, 1.2). 101 . 1. . . 2. . 102 1. ( . 3836) ( , , 2007) SiO2 39.76 TiO2 0.06 Al2O3 0.33 FeO 9.24 MnO 0.10 , .% CaO Na2O 0.50 0.01 MgO 49.29 K2O 0.01 Cr2O3 0.37 NiO 0.33 , , , 3 , 10–6 , . , (0.7-1.5) 10-6 ( .2). (1-1.6) 10-6 ( 5% , ), . 2. ( / ) . 27.07.09 26.08.09 28.09.09 0.029 0.029 0.044 Na 0.024 0.024 0.036 Ca 10.34 3.87 3.41 27.07.09 26.08.09 28.09.09 0.044 0.044 0.059 0.024 0.024 0.036 6.14 1.41 1.71 3836 , Mg pH 5.74 6.73 3.33 6.78 3.64 6.92 4021 5.05 7.59 5.40 7.75 5.66 7.98 K/Na ( ) 0.7 0.7 0.7 1.1 1.1 0.9 ( 0.005 ) Na. – , , , ( ( . 3836), . 4021). , , Na . 90 , 1.5 ; . % K2O 3.5 . % Na2O ( . 3). . 3. . .: SiO2 47-52 TiO2 1-3.4 Al2O3 14-18 ( .« . , 1985). Fe2O3 2-6 FeO 4-11 MnO 0.1-0.3 , .% MgO CaO 5-7 6-13 ( Na2O 1.6-3.5 K2O 0.1-1.5 7-13) 2O5 <0.5 , - 103 , . 90 , . 1 3836 ( ) ( ( )- % )- 40 %. . . , 0.5 2 . (100), , (100) . (001) , , . IV , . . 0.5 , c:Ng = 38' 6 . . , . , , . , (100), , . (101). , , . , , , . , . , , , . . . 104 . - - px 2 -4021 ( ) -75 % (Opx)- 25 % , . , 1 6 . . . x II ), ( , , , . , . Opx , 2 0.5 . . , x . II , , . - ; . . 105 Opx Ol Opx Opx 106 : : . . , . , . , . , . , . . , . . , . . . , , , . . . . 2009 2- , 3- 3- . , (130 4- . Ala, Gly – , , 300 ) Ala, Gly Asp 1:1:1 1:4:1 Glu Lys 1:2:1:1 1:1:1:1 4- . 1:2:1:1 1:1:1 1:4:1 Ala, Gly, Asp 1:1:1:1 . Ala, Gly, Glu Lys – . - (Ala Gly) . E2 (Ala, Gly Glu 1:1:1, 1.5 . H2SO4) , ( ) , - Glu , H2O. – ( ) , , , – Glu. ( ). 2 . , , – 12 . , 107 ( ), , , Glu. . 1 . « .» 11-12 ( 2009 ., , ) (31 , 1. , 572009 ., –4 , ). . , . , . , . , . , . . // , 2009 . – . 2. Alexey S. Kononikhin, Olga V. Demina, Erast V. Kunenkov, Andrey A. Khodonov, Maria I. Indeykina, Igor A. Popov, Sergey D. Varfolomeev, Eugene N. Nikolaev. Sequencing of peptides produced in the process of mimicking prebiotic syntheses from amino acids by thermocycling. // 57th ASMS Conference on Mass Spectrometry, May 31 - June 4, 2009 (Phyladelphiya, Pennsilvaniay, USA). Abstract 1475. - , « » , , , , , . , , , . [1-4], . [2]: 4.5 . 4.2 . 4.2 - 4.0 . 4.0 , , 108 , . 3.8 , , , 3.6 . , . , . . , ( [2-4]. . ) , , , , . ( 0.1M–1), ~ , , . , , , , . 7.5 4– , . , , . , , , . , [5]. , , . , , [6]. , , , [6]. , , , [7]. , , ( , ), , , , - . , , « , » , , , . (Asp Lys, Asp Arg, Glu Lys, Arg 2Glu) , [8-9]. 109 . ( ) ( ( ). ) . ( – – – – – ). , - . . . , ( 4.2 8.2). , , . , . , , . 2009 2- , 3- 4- . - 1. : Ala Gly Asp; Ala, Gly Glu; Ala, Gly, Lys . Asp; Ala, Gly, Lys – Gly; Ala, Glu - . . - . 120 ( . ) Merck, UF256 (10%) : 4:4:2, – 5%- (7:4:2, Ala-Gly), . Finnigan LTQ FT (Thermo Electron, 110 - 130 ), - ( ) 7 . , (ESI). , ( - ). . 2. ( ) - Ala Gly. 1. 1. A- Ala - Gly. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. (1400 , 300 Gly-Ala (1:1) Gly-Ala (2:1) Gly-Ala (1:2) Gly-Ala (1:1) Gly-Ala (2:1) Gly-Ala (1:2) Gly-Ala (1:1) Gly-Ala (2:1) Gly-Ala (1:2) Gly-Ala (1:1) Gly-Ala (2:1) Gly-Ala (1:2) Gly-Ala (1:1) Gly-Ala (2:1) Gly-Ala (1:2) 16. 17. 18. 19. 20. 21. Gly-Ala (1:1) Gly-Ala (2:1) Gly-Ala (1:2) Gly-Ala (1:1) Gly-Ala (2:1) Gly-Ala (1:2) ) 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 . H2SO4 . H2SO4 . H2SO4 . H2SO4 . H2SO4 . H2SO4 . H2SO4 . H2SO4 . H2SO4 . NaOH . NaOH . NaOH . NaOH . NaOH . NaOH 4.5 4.5 4.5 8.5 8.5 8.5 , , ( . .1 . 2). 111 300 h 104 h O H2N CH C OH ( < 1.5 %) CH3 NH2-Ala-Gly-CO2H L-Ala NH2-Gly-Ala-CO2H + NH2-Gly-Gly-CO2H NH2-Ala-Gly-CO2H NH2-Gly-Ala-CO2H NH2-Gly-Gly-CO2H O NH2-Ala-Ala-CO2H H2N CH2 C OH NH2-Ala-Ala-CO2H NH2-Gly-Gly-Gly-CO2H L-Gly NH2-Ala-Ala-Ala-CO2H NH2-Gly-Gly-Ala-Ala-CO2H (1:1) NH2-Gly-Gly-Gly-Gly-CO2H NH2-Gly-Ala-Ala-Ala-CO2H NH2-Gly-Gly-Ala-Ala-CO2H NH2-Gly-(Gly)4-Ala-CO2H (?) NH2-Gly-Ala-Ala-Ala-CO2H NH2-Gly-Gly-Gly-Gly-CO2H [2Ala+H]+, [(2Ala+Gly)+H]+, [4Gly+H]+ . . 1. , 1:1, 1300 , L-Ala - L-Gly ( , ) NH2-Gly-Gly-(Ala)3-Ala-CO2H NH2-Gly-(Gly)6-(Ala)2-Ala-CO2H NH2-Gly-(Gly)4-Ala-Ala-CO2H NH2-Gly-(Gly)5-(Ala)3-Ala-CO2H NH2-Gly-Ala-CO2H NH2-Gly-Gly-CO2H NH2-Gly-(Gly)3-(Ala)2-Ala-CO2H NH2-Gly-(Gly)9-Ala-CO2H NH2-Gly-(Gly)2-(Ala)3-Ala-CO2H NH2-Gly-(Gly)4-(Ala)6-Ala-CO2H NH2-Ala-Ala-CO2H NH2-Gly-Ala-Ala-CO2H NH2-Gly-Gly-(Ala)4-Ala-CO2H NH2-Gly-Gly-Ala-CO2H NH2-Gly-(Ala)5-Ala-CO2H O NH2-Gly-(Gly)6-Ala-CO2H NH2-Gly-Gly-Gly-CO2H H2N CH C OH CH3 NH2-Gly-(Gly)5-Ala-Ala-CO2H NH2-Ala-Ala-Ala-CO2H L-Ala NH2-Gly-(Gly)4-(Ala)2-Ala-CO2H NH2-Gly-(Gly)2-Gly-CO2H + NH2-Gly-(Gly)3-(Ala)3-Ala-CO2H NH2-Gly-Gly-Gly-Ala-CO2H NH2-Gly-Gly-Ala-Ala-CO2H O NH2-Gly-(Gly)2-(Ala)4-Ala-CO2H H2N CH2 C OH NH2-Gly-Gly-(Ala)5-Ala-CO2H NH2-Gly-(Ala)6-Ala-CO2H NH2-Gly-Ala-Ala-Ala-CO2H L-Gly NH2-Gly-(Gly)2-Gly-Ala-CO2H (1:1) NH2-Gly-Gly-Gly-Ala-Ala-CO2H NH2-Gly-Gly-(Ala)2-Ala-CO2H NH2-Gly-(Gly)5-(Ala)2-Ala-CO2H NH2-Gly-(Gly)4-(Ala)3-Ala-CO2H NH2-Gly-(Ala)3-Ala-CO2H NH2-Gly-(Gly)3-(Ala)4-Ala-CO2H NH2-Ala-(Ala)3-Ala-CO2H [2Ala+H]+, [(2Ala+Gly)+H]+ NH2-Gly-(Gly)2-(Ala)5-Ala-CO2H NH2-Gly-(Gly)4-Ala-CO2H . NH2-Gly-Gly-(Ala)6-Ala-CO2H NH2-Gly-(Gly)2-(Ala)2-Ala-CO2H . 2. 300 NH2-Ala-Gly-CO2H L-Ala - L-Gly ( , 1:1, 1300 , , , ). , , , . .1 2, . , Ala-Ala-Ala , 5) ( , Glu. 112 – Ala – Gly 2). – Asp 2. 2. Gly Glu) A-L (Ala, Gly Asp). (Ala, , , (0 ) A Ala, Gly, Glu (1:1:1), 4,5 . H2SO4 Ala, Gly, Glu (1:4:1), 9 . H2SO4 Ala, Gly, Asp (1:1:1), 4,5 . H2SO4 Ala, Gly, Asp (1:1:1), 9 . H2SO4 Ala, Gly, Glu (1:1:1), 1,5 . H2SO4 Ala, Gly, Glu (1:4:1), 3 . H2SO4 Ala, Gly, Asp (1:1:1), 1,5 . H2SO4 Ala, Gly, Asp (1:4:1), 3 . H2SO4 Ala, Gly, Glu (1:1:1), 3 . H2SO4 Ala, Gly, Glu (1:4:1), 6 . H2SO4 Ala, Gly, Asp (1:1:1), 3 . H2SO4 Ala, Gly, Asp (1:4:1), 6 . H2SO4 B C D E F G H I J K L ( 2) ( 130 ) 104 (A1) ) 300 (A2) 130 104 (B1) 300 (B2) 130 104 (C1) 300 (C2) 130 104 (D1) 300 (D2) 130 104 (E1) 300 (E2) 130 104 (F1) 300(F2) 130 104 (G1) 300 (G2) 130 104 (H1) 300 (H2) 104 (I1) 300 (I2) 130 104 (J1) 300 (J2) 130 104 (K1) 300 (K2) 130 104 (L1) 300 (L2) . . 3), . ;( ;( , ( - ) , Glu H2O. ( , – ) , , , – Glu. , ( ): Glu O O C N N O . O E ( Glu – 2 2 ) . 3. Gly Glu 2 3- Ala, . 113 [M+H]+ ( [M+Na]+ . ) 2 . . ) Ala-Gly (Gly-Ala) Ala-Ala Gly-Gly Gly-Gly-Gly Gly-Gly-Ala Gly-Glu (Glu-Gly) Ala-Ala-Gly Ala-Gly-Ala Gly-Ala-Ala Ala-Glu Glu-Ala Ala-Ala-Ala Gly-Gly-Glu Gly-Gly-Ala-Ala Ala-Gly-Glu; Gly- Ala-Glu Glu-Glu Gly-Ala-Ala-Ala Ala-Ala-Glu Gly-Glu-Glu Glu-Glu-Gly Ala-Gly-Glu-Ala; Ala-Ala-Gly-Glu Ala-Glu-Glu; Glu-Glu-Ala Gly-(Gly)4-Gly Glu-Glu-Gly-Gly Ala-Gly-Glu-Ala-Gly Gly-Glu-Glu-Ala; Ala-Gly-Glu-Glu Gly-(Gly)5-Gly Gly-(Gly)5-Ala 147.078 161.094 133.062 190.0835 204.0995 205.08 227.06 + + + + + + 218.1155 - + 219.10 241.08 + 232.1315 262,1 275.137 276.12 298.10 + + + + 277.10 289.153 290.13 334.12 299.11 312.12 - + + + + 347.16 - + 348.14 - + 361.148 391.15 404.18 405.16 427.15 + + + + 418.17 432.1855 462.18 - 460.2175 - + 463.17 476.20 498.18 + + 477.187 533.22 499.16 + + Ala-Gly-Glu-Glu-Glu; Gly-Glu-Glu-Ala-Glu 534.20 - + Gly-Glu-Glu-(Ala)2-Ala; Ala-Gly-Glu-Ala-Glu-Ala 547.24 569.22 + 130.05 187.07 - + + Gly-Glu-Glu-Ala-Gly; Ala-Gly-Glu-Glu-Gly Gly-(Gly)3-(Ala)2-Ala Glu-Glu-Gly-Glu Gly-Glu-Glu-Ala-Ala; Ala-Gly-Glu-Ala-Glu Glu-Glu-Ala-Glu Glu-Glu-Ala-Gly-Gly-Ala; Ala-Gly-Glu-Ala-Gly-Glu; Gly-Glu-Glu-Ala-Ala-Gly; Ala-Gly-Glu-Ala-Glu-Gly -E Gly-E -Gly 114 Ala-E ; -Ala 201.09 - + 241.08 - + 244.09 - + Ala-Gly- 258.11 280.09 + (Glu+Gly2H2O)]-Ala Glu-E Ala-Ala-E Gly-E -E 259.09 272.12 298.10 294.10 - + + + O H N O E' O E' CO H2N O 2 Gly-Gly-E CO Gly Gly H2N O CO E' Gly H2N O O O NH E'-Gly O Gly-Gly-E -Gly Ala-E -E ; OC 301.11 312.12 + + E'-Ala H2N , O O O NH E'-Ala O Ala-Gly- -Gly; Glu- -Gly Gly-Gly-E -Ala Gly-Glu-E ; Glu-E -Gly Ala-Ala-E -Gly; Ala-Gly- -Ala; Ala-E -Glu-Ala; Ala-Ala-Glu- E ; Ala-Glu-E ; Glu- -Ala; -Glu-Ala Gly-Gly-E -E 315.13 - + 316.11 - + 329.15 351.13 + 330.13 - + 355,12 - + 115 Gly-E -E -Ala; 369.14 - + 370.12 373.14 - + + 383.154 - 383.16 + 387.15 409.14 388.13 400.19 401.17 - + 423.15 + + 423.15 - + 426.16 - + Ala- -E -Gly; OC E'-Ala-Gly H2N O O O NH E'-Ala-Gly O Glu-E -E Gly-Gly-E -Glu; Glu-E -Gly-Gly Ala-Ala-E -E ; OC E'-Ala-Ala H2N O O O NH E'-Ala-Ala O Gly-Glu-E -Ala; Ala-Gly-Glu-E Ala-Gly-E -Glu Glu-E -Gly-Ala Glu-E -Glu Ala-Ala-E -Gly-Ala Ala-Glu-E -Ala; Glu-E -Ala-Ala OC E'-Ala-E' + H2N O O O NH E'-Ala-E' O OC E'-Ala-Gly-Gly H2N O O O NH E'-Ala-Gly-Gly O OC H2N O 116 E'-Gly-Glu 427.15 + O O NH E'-Gly-Glu ; O Glu-E -Gly-E Gly-E -E -Ala-Ala; Ala-E -E -Gly-Ala; Ala-Gly-E -E -Ala; 440.18 - + 441.16 - + Glu-E -Ala-Gly-Gly Glu-E -Gly-Glu 444.17 445.16 - + + Gly-Glu-E -Ala-Ala; 458.19 480.17 + 459.17 - + 466.16 - + 480.17 483.18 502.15 - + + E'-Ala-Ala-Gly OC H2N O O E'-Ala-Ala-Gly NH O O OC E'-Ala-Glu H2N O O O NH E'-Ala-Glu O Ala-Glu-E -Ala-Gly; Glu-E -Gly-Ala-Ala; Glu-E -Ala-Ala-Gly Ala-Glu-E -Glu; Glu-E -Glu-Ala; Glu-E -Ala-Glu OC E'-Gly-Gly-E' H2N O O O NH E'-Gly-Gly-E' O Ala-Gly- - OC E'-Ala-Gly-Gly-Gly H2N O O O NH E'-Ala-Gly-Gly-Gly O 117 OC E'-Ala-Glu-Gly 484.17 - 494.19 - + 497.20 519.18 + Ala-Gly-Glu-E -E ; Ala-Gly- -E -Glu; Glu-E -Gly-Ala- ; 498.18 520.16 + Gly-E -Ala-Gly-Gly-Gly 501.197 511.22 512.20 533.20 534.18 + 515.21 - + H2N , O OC E'-Ala-Gly-Glu H2N O O O NH E'-Ala-Glu-Gly , O O O NH E'-Ala-Gly-Glu O Ala-Ala-E -E - E ; OC E'-Ala-Ala-E' H2N O O O NH E'-Ala-Ala-E' O OC E'-Ala-Gly-Gly-Ala H2N O O O NH E'-Ala-Gly-Gly-Ala O Gly-E -E -(Ala)2-Ala OC E'-Ala-Ala-Glu + H2N O O O NH E'-Ala-Ala-Glu ; O Glu-E -Ala-Ala-E Ala-Glu-E -Ala-Gly-Gly; 118 Glu-E -Ala-Gly-Gly-Ala; Ala-Gly-Glu-Ala-Gly- E Gly-Glu-E -Ala-Ala-Gly; Glu-E -Gly-Ala-Ala-Gly Ala-Gly-(Glu)2-E ; Gly-Glu-Glu-Ala-E Gly-Glu-E -(Ala)2-Ala; Ala-Glu-E -Ala-Gly-Ala; Glu-E -Gly-Ala-Ala-Ala Ala-Glu-E -Glu-Ala; Glu-E -Ala-Ala-Glu; OC E'-Ala-Gly-Gly-E' 516.19 - + 529.23 541.19 + 530.21 - + ; 537.19 - + 541.19 - + 551.21 - + 555.20 - + 569.22 - + 572.25 - + H2N O O O NH E'-Ala-Gly-Gly-E' O OC E'-Ala-Glu-Gly-Gly H2N O O O NH E'-Ala-Glu-Gly-Gly O OC E'-Ala-Ala-Gly-E' H2N O O O NH E'-Ala-Ala-Gly-E' O Glu-E -Ala-Gly-Gly- ; Glu-E -Gly-Ala- -Gly OC E'-Ala-Ala-Gly-Glu H2N O O O NH E'-Ala-Ala-Gly-Glu O Gly-Glu-E -Ala-Ala-E ; Ala-Glu-E -Ala-Gly-E ; Glu-E -Gly-Ala-Ala-E ; Glu-E -Gly-Ala-E -Ala Glu-E -Ala-Gly-Gly-Ala-Gly ; 119 OC E'-Ala-Ala-Glu-Ala 583.24 - + 587.23 - + 591.20 595.20 - + 609.21 631.19 + 613.21 - + 626.24 - + 644.2565 - + 1( 187.07 - H2N O O O NH E'-Ala-Ala-Glu-Ala O Glu-E -Ala-Ala-Gly-Glu; Ala-Gly-Glu-Ala-Gly- E ; Gly-Glu-E -Ala-Ala-Glu; Ala-Glu-E -Ala-Gly-Glu; Glu-E -Gly-Ala-Ala-Glu Ala-Gly- - - OC E'-Ala-Glu-Gly-Gly-E' + H2N O O NH O E'-Ala-Glu-Gly-Gly-E' O Ala-Gly-Glu-E -E -E ; Glu-E -Gly-Ala-E -E OC E'-Ala-Glu-Gly-Gly-Glu H2N O O O NH E'-Ala-Glu-Gly-Gly-Glu O E'-Ala-Ala-Gly-Glu-Gly OC H2N O O O NH E'-Ala-Ala-Gly-Glu-Gly ; Glu-E -Ala-Gly-Gly-Ala-E O Glu-E -Ala-Ala-Gly-GluGly; Glu-E -Ala-Gly-Gly-Ala-Glu O O OH H2N NH O 120 ) + O O 244.09 - + 258.11 - + 315,13 - + 316.11 - + 355.12 - + 373.138 - + 387.15 - + 426.16 - + 444.17 - + Gly H2N NH O O O Ala H2N NH O O O Gly-Ala H2N NH O O O Ala-Gly H2N NH O O O Glu H2N NH O O O Gly-E' H2N NH O O O Gly-Glu H2N NH O O O Glu-Gly H2N NH O O O Glu-Ala H2N NH O O O Gly-Ala-E' H2N NH O O O Gly-Ala-Glu H2N NH O 121 O 458.19 - + 466.16 - + 484.17 - + 515.21 - + O Glu-Ala-Ala H2N NH O O O Gly-E'-E' H2N NH O O O Gly-E'-Glu H2N NH O O O Glu-Ala-Ala-Gly H2N NH O O O Gly-Ala-Glu-Ala H2N NH O 529.23 O + O Glu-Ala-Ala-Ala H2N NH O O O 577.19 - + 595.20 - + 613.21 - + 2( 259.095 - + 330.13 - + 370.12 - + Gly-E'-E'-E' H2N NH O O O Gly-E'-Glu-E' H2N NH O O O Gly-E'-Glu-Glu H2N NH O ) O (CH2)2-COOH H2N NH HOOC-(CH2)2 O -E O (CH2)2-CO-Ala H2N NH HOOC-(CH2)2 O 122 O (CH2)2-CO-E' H2N NH HOOC-(CH2)2 O 388.135 - + 401.17 - + 441.16 - + 481.16 - ? 592.18 - + 115.05 - + 129.067 - + 143.083 259.095 201.089 187.073 - + + + O (CH2)2-CO-Glu H2N NH HOOC-(CH2)2 O O (CH2)2-CO-Ala-Ala H2N NH HOOC-(CH2)2 O O (CH2)2-CO-Ala-E' H2N NH HOOC-(CH2)2 O O (CH2)2-CO-E'-E' H2N NH HOOC-(CH2)2 O O (CH2)2-CO-E'-E'-E' H2N NH HOOC-(CH2)2 O (2 Gly - 2H2O) O HN NH2 O (Ala + Gly - 2H2O) O HN NH2 H3C O (2 Ala - 2H2O) (2 Glu - 2H2O) (Ala + Glu - 2H2O) (Glu + Gly - 2H2O) HPLC , Glu . 123 , Asp Lys Ala Glu Gly 2 – Lys. 4. (Ala, Gly, Lys 4. M-X (Ala, Gly, Lys Glu) Asp). , , (0 ) M N O P Q R S T U V W X Ala, Gly. Asp, Lys (1:1:1:1), 2 . H2SO4 Ala, Gly. Asp, Lys (1:1:1:1), 4 . H2SO4 Ala, Gly. Asp, Lys (1:1:1:1), 6 . H2SO4 Ala, Gly. Asp, Lys (1:2:1:1), 2.5 . H2SO4 Ala, Gly. Asp, Lys (1:2:1:1), 5 . H2SO4 Ala, Gly. Asp, Lys (1:2:1:1), 7.5 . H2SO4 Ala, Gly. Glu, Lys (1:1:1:1), 2 . H2SO4 Ala, Gly. Glu, Lys (1:1:1:1), 4 . H2SO4 Ala, Gly. Glu, Lys (1:1:1:1), 6 . H2SO4 Ala, Gly. Glu, Lys (1:2:1:1), 2.5 . H2SO4 Ala, Gly. Glu, Lys (1:2:1:1), 5 . H2SO4 Ala, Gly. Glu, Lys (1:2:1:1), 7.5 . H2SO4 ( 1 2 12 ;( ;( 130 ) 104 (M1) ) 300 (M2) 130 104 (N1) 300 (N2) 130 104 (O1) 300 (O2) 130 104 (P1) 300 (P2) 130 104 (Q1) 300 (Q2) 130 104 (R1) 300 (R2) 130 104 (S1) 300 (S2) 130 104 (T1) 300 (T2) 130 104 (U1) 300 (U2) 130 104 (V1) 300 (V2) 130 104 (W1) 300 (W2) 130 104 (X1) 300 (X2) ) . 3. ( ). ( (10-3 ) F8_p 3 30 10 10-2 . F8 124 , , -2 . 5). 2 F9_p). . . F9 ( . 5. F8 1,3 ±0,2 -5 F9 0,5±0,1 -5 4-5 0,6±0,1 -5 ) 12 , ), ( , , Glu Asp. , – 2, . - – , Glu, . , [9] , Asp ( Glu) Ala Gly. , . , F8_p , F9_p . , , [10]. , . , [10] , . – , , , UNICO 2800 ( - ( ), , -, , . . - ) : ), . – 340 510 ( 24 . 3). 46%, 4 , 6 ). 125 . 3. – , . -4 ; 2-6 ; 1 3 – 24 . . : 1. , Ala Gly , 1-3 . HPLC . 2. . , Ala, Gly Glu/ : Asp Ala Asp, , Glu, , , . , Gly – E2 (Ala, Gly 3. . Glu 1:1:1, 1.5 . H2SO4) , - ) , , Glu H2O. – ) , , , – 4. Glu. . , , . 5. , 126 12 ( ), , , Glu. . 6. , , . , , . 2- , 3- 4- , , Gly Asp (130 1:1:1 . Ala, Gly – 1:4:1 Ala, Gly, Asp Lys 1:1:1:1 1:2:1:1 Lys Glu 1:1:1:1 1:1:1 . 1:2:1:1 . . E2 (Ala, Gly . H2SO4) , 300 ) Ala, 1:4:1 Ala, Gly, Glu – . (Ala Gly) Glu 1:1:1, 1.5 , ( - ) Glu , , H2O. ( – ) , , , – Glu. ). 2 . , , . 12 , ( ), , , Glu. . 1 . .» ( 572009 ., , 11-12 2009 ., , ), (31 , , –4 ). 127 1. . - .: , 2001. 253 . 2. R. Stern† and M. J. Jedrzejas, Carbohydrate Polymers at the Center of Life’s Origins: The Importance of Molecular Processivity. // Chem. Rev. 2008, 108, 5061–5085 3. H. R. Kricheldorf. Polypeptides and 100 Years of Chemistry of a-Amino Acid NCarboxyanhydrides. // Angew. Chem. Int. Ed. (2006), 45, 5752 – 5784. 4. A. Commeyras, H. Collet, L. Boiteau, J. Taillades, O. Vandenabeele-Trambouze, H. Collet, J-P. Biron, R. Plasson, L. Mion, O. Lagrille, H. Martin, F. Selsis, M. Dobrijevic, Prebiotic synthesis of sequential peptides on the Hadean beach by a molecular engine working with nitrogen oxides as energy sources. // Polym. Int. (2002), V. 51, P.661-665 5. Corey M.J., Corey E. // Proc. Natl. Acad. Sci. USA, 1996, V. 93, P. 11428 6. Lahav N., White D., Chang S. // Science, 1978, V. 201, P. 67 7. Flegmann A.W., Tattersall R. // J. Mol. Evol., 1979, V. 12, P. 349 8. Varfolomeev S.D., Kinetic models of the prebiological evolution of macromolecules. Thermocycle as the motive force of the process. // Mendeleev Commun., 2007, V. 17, N 1, pp. 79. 9. . ., . ., . ., . ., . ., . ., . . // « .» . . .: .: « », 2008, . 57-78. 10. , . , . , 2007142696 21.11.2007 « ». 23.03.2009 . 128 K/NA : : . , . . , . , . . . , , , ( ). , , . , . . . . . , . , , , , , , , , . , 1) , , 2) , , 4) . , 3) , , , , . , , . , , Na , K, . , , , , , . – 1) , , 2) , 3) , 4) , , Corning-410 ( ) ANOVA. 4) . . 129 K/Na , , , . , , Na+ , ( . 4 .) , . , . – 0.16 465 K/Na , , . , 0.03 ± 0.006 ( , 1. K/Na – , , . 1). . K/Na 0.025 0.025 0.028 0.022 0.027 0.057 0.056 0.034±0.006 , Na ( , ), ( , , ) 188% 2), , , 108 203 0.029±0.001. K/Na K/Na. , + Na ( . , 2. K/Na Wistar Perca fluviatilis Coregonus Squalus acanthias Acipenser, Lampetra fluviatilis n 10 10 10 9 15 50 10 19 12 11 K/Na 0.028 0.03 0.028 0.027 0.037 0.031 0.028 0.027 0.020 0.032 10 0.029 0.029±0.001 ( Na+ 3250% 14,4 K/Na . , 0.034±0.006 130 468 ( . 1). . 3), 3. K/Na Pecten islandicus Mytilus galloprovincialis n 20 12 K/Na 0.032 0.028 6 0.033 14 0.028 11 18 0.034 0.043 Unio pictorium Margaritifera margaritifera Paralithodes camtschatica Labellula quadrimaculata 0.033±0.002 , Na [ , ( , 2005]. .4) , . 4. , , . Na * 176.5 3000 17 290 0.8 17 17.1 0.047 1 .* , 2005, ( . 16). , , , , , . . , , Mg2+ , 1971; Pestka, 1968]. [ + , Na+ , , , . – , . , , , . 4 , , . K/Na , . , . , K/Na , . + Na+ 131 . , + , + Na , + – . . , , + 1. Na+ ( + , . 5). , K/Na ( , ( ), . 5) 5. K/Na , , , , K/Na 0.047 0.034±0.006 0.029±0.001 0.033±0.002 0.021 0.021 6.29 2.77 1.01 1.35 , , , , R. temporaria , , Littorina saxatilis , Unio tentaculata n– Na 0.16 465 108 203 14.4 468 n 7 166 69 8 12 13 8 10 6 , , , Na+. + , ), , , , , . K/Na 2. 4 4, 2 [ , , 2008] – , . , Na . K/Na Lactobacillus fermentum 94 , . , , , . , , , , , . K/Na , . 132 , , , Na , . Lactobacillus fermentum 94 . , , – , , , . . 5 1 48 37 . , 0.1 4 . , «Sartorius» 4413 ). 8 , 105 , 30 HNO3 90° 1 . . . , . . Corning – 410 ( Na ). M±m, ANOVA. , Lactobacillus fermentum 94 2.2±0.1. , K/Na K+ Na 4, 0.25. Na+. 2% , , + 800%. + , , , , . + , , . , . , . . . . , . : , , , + K/Na 2.2±0.1, 2.77±0.1, , , 0.03. /Na+ , , + 1. , , /Na+ , , . 133 K Na, + K . + Na+ , . . + K, , , K+. , . , , . + , , . . (2007), , « , , ». , , . , . 134 , K+ , , ( ) , : : . , . . . , . , . . , . , . . , , . - ( , ), [ , . . . 2001]. , , , , [ . ., , 2007, 417, 265; Kolesnikov M.P. et. al., Origins Life Evol. Biosph., 2008, 38, 243]. », . , ( ) . 4 3 N 5 N R H N R N 7 2 N N 1 8 , NH O ; R=CH3 – R=H – , O N 6 , , . h + Pi + H2 O 135 , [Heinz B. and Ried W., BioSystems., 1981, 14, 33; . . ., 2001, 37, 385], , , , . ., , , . , . . ( ) . . 1. , . . 2. , . . , ), , ,« » , , . . , 2000 -150 , . 2000 “ ” ( -02- « ). » « »( ), , . « » “ ”( » ( ). ). , , , . , . , , 8:3:1). ( ( ) . , , ( 136 .1). max = 525 , max ). , max ( . 1. = 440 . 2). = 450 , ( = 340 max , . . 2. 1– 2– 3– 340 375 450 137 . 3. 1– 2– 525 440 , 525 , , 290 . 260, 375 340 , , 450 , 440 , 3). (77 ). . , 20 , ( . 4). , . , ( 138 ). . . 4. , . 5 ( , ). ( ), 260, 375 455 27100, 10400 12200 . , , 1 -1 , . , , . . 5.1 ( 20 340 , , . ). – , , . , , , 139 , . , . . , NH2CHCH3COOH. NH2CH2COOH ( , ) , . , , , (8:3:1), , . , ( , ). 500 6 350 . 6% ( , ), 450 15%. , , , 7. ( 340 ), . , UV-A , . ( . 8). , , . 140 . 6. , , , 8:3:1). ( 350 . . 7. . . , – , 40 . 141 . 8. ( 4) ( :1– . 440 340 ;2– 1, 2, 3) 375 ;3– 450 (8:3:1). :4– ; . , . , ( ) ( ). , , . , ( , , , , - ) , . 142 : : . . , . . , . ). , , . . , . : , , . . . , , ), , . , . , , , . , , . , , . ( CH4, NH3) , . « ». , . , . . , . . . 143 , , .( . 1). hv + H2O + Pi M+N S t + H2O + MN - MN MN + Q H2O + MNQ S t MNQ MNQ + QP H2O + MNQP , . , , . , , . - , , . . . , , , , . , , . . . , . . , , , . : .( 144 . 2). , , . , , , . , . , . . . . . , . , , . , , , , . , , , , . , , , , , , . : E.M. Galimov/ Intern.Journal of Molecular Sciences,v.10, p.2019-2030, 2009, ( . . ) . 145 : : ) , . , . , , +200° , . -100 , 2 , 12, , , , " " , – . , . , ( » « ) , . - , , , . , . , , . , , , , ), , . , ( : 5:5:1) , ( (60° =8.0). , : -1 : 3) , , 146 80° 130° . , , , . . ( ( ) ) . , , . ( ) . . ( - ) : 1- : 5:1:1. : , : - 7:3, , ( ). , , . 195 ( ) 60° 254 ( ). =8.0 – (1 :3). 60° 150 ( . ), . - – : + . ?) + ( , , , ( 10, 50 100 , ). ( , ( . - 1:3 – 3). 60 147 130° . 60° – 2 exp ((T2 – T1)/10) , , . 27 = 128 . , , ) ( , , , ). ( , 148 ( . ). (100 ( , ( , , ( ) ) ), –0 ) . . . 4) 1 2 100 3 100 0 4 100 . 2. . ( ) , 100 . –( ), ) .. ( ( ) ( ) . 5 , ( . ) .5 , , 1-2 %. 149 ) ) . 5. (100 + + ). , - . , . . , , . , , , , . . 150 : : : . , . . , . . , . , . , . . . , , , , . . , , [1-6]. [7] , , . , . [7] , ( ). . , . , , , , , , . , 151 , , , . , , . , , . ) . , , , . . , . , , . ( ( ). , ), , , , , . ( ) , ), . . . , , . . . . , . [8,9], . , [10] , , 152 ( .1). . 1. . i,j. ( A, B, C , ) D, . 2 . 3 CD AB , 2 A (C B D 3). 4 5. , 6 7 . , AB AB CD , CD ( 8. ) , 9 2 AB 3. CD, 10, . AB CD 1 . ) AB, CD. , , , . , AB , , CD. , – . , . 1,2, , 1,3 ., : 153 dn1 dt dn2 dt dn3 dt dn4 dt dn5 dt dn6 dt dn7 dt dn8 dt dn9 dt dn10 dt n n 1,2 1 n , n 1,3 1 9,1 9 10,1 10 n , n 2,4 2 n 3,5 3 1,2 1 n , 1,3 1 n , n 4,6 4 3,5 3 n 5,7 5 n 6,8 6 n 7,8 7 2,4 2 n , n , 4,6 4 n , 5,7 5 n n 8,9 8 n , n 8,10 8 6,8 6 7,8 7 n , n 8,9 8 9,1 9 n . n 8,10 8 10,1 10 nk ( ), k nk(t = 0) = 0 k , . n1(t = 0) = 1 k 1 , . 8 ( (9,10) . 1, ) : n8 n8 8,9 n9 n10 8,10 9,1 . 10,1 AB CD n9 n10 8,9 10,1 8,10 9,1 . , n9 n10 10 9 . , ( , 10 ( 2 10,1 9,1 9 8,9 2 8,10 ), , , ), AB CD. i,j , , . 154 ( . . 2) . . 3 8,9 8,10 , 9,1 , 10,1 . AB , , , , CD. . , 1 2 4 6 8 – 9 . CD, , , . 4. . 2. k (nk) i,j. . 3. k (nk) , 8,9 8,10 9,1 10,1 155 . 4. k (nk) , 8,9 8,10 10,1 . 9,1 , ( A, B, C , D) , , , . , [7]. . . . . , . H (n, t ) (ln 2) 1 nk ln nk-1 k nk , 1, nk – k H(n,t) , 156 2 3. . . 5 . 5. , 8,9 i,j 8,10 9,1 H(n,t) . 3), 10,1 ( . – . 2). n1 = 1, (k 1) = 0. nk H(n,t = 0) = 0. ( . 2), , .5 , , , , . . H(n,t) = const > 0. , nk nk ( ) , : n1 . .5 3): n9 nk (k ( 9) . . , n9 H(n,t) . AB , . , AB , . AB ( , , ) . AB . , [11]. , . . . , , H(n,t) = const > 0 (!) (A·B·C·D) (AB·AB) (AB·AB) (A·B·C·D) nk > 0. , , , , , , , , , . 157 n9/n10, , , , ( ). , , . , , ( .). , , , . 1. Page R.D.M., Holmes E.S. Molecular evolution: a phylogenetic approach. Oxford, Blackwell science, 1998, 352 p. 2. Kauffman S.A. The origin of order: self-organization and selection in evolution. Oxford, Oxford University press, 1993, 734 p. 3. Smith J.M., Szathmary E. The origin of life. N.Y., Oxford University press. 1999, 180 p. 4. Babloyantz A. Molecules, dynamics and life. An introduction to self-organization of matter. N.Y., Wiley-Interscience, 1986, 345 p. 5. Kimura M. The neutral theory of molecular evolution. Cambridge, Cambridge University Press, 1983, 367 p. 6. Behe M.J. Darwin’s black box. The biochemical challenge to evolution. N.Y., Simon & Shuster, 1998, 307 p. 7. . : . . , , 2001, 256 . 8. . . , , 1961, 152 . [Bohr N. Atomic physics and human knowledge. New York, John Wiley & Sons, 1958, 101p.] 9. . . , , 1971, . 2, 676 c. 10. ., . : , . , , 2006, 480 . 11. . . , 2007, . , 1, . 89-93. 158 – : . . . , . , . , ( ) . . 2 , Chl (1), Cu (3), Sn (4), Zn (5), Cd (6)), . L.)., 2 2 , MT (M = Al (7), Zn (8)), M (M = Cr (2), (Urtica dioica ( . Chl , ). – . . 2 , ( , 1 : 1). . (pH 8.5), (L 40/100) 10 (« », ), 200 1-8. , . 0.2 2 (150 2 ) 1-8 2 . 1. 2 2 2 2 2 1 2 2 Mg-, Al-, Zn- 2. ( 2 Cd- ( 1-8 ln[ 2 2] – t. N 1 . . 1, 3, 5, 7, 8). . 90%) (60( 1 ) , . 2 1, 2, 4, 6, 2 Mg, Cr, Zn 2 2 Sn. , . 159 . , 2 - ( 1,2- -3,5- . ( - ) 2 2. 2 1-3, 7 , ( a = 0.93 Cu1, , . 8.5) kef·105, [Cat]·10 , kobs·102, -1 -1 2 2-6 (pH 2 -1 kef·105, 2232 41 4 126 13 34 576 622 1.18 2.27 2.27 4.35 0.60 1.11 4.25 5.25 N, -1 62.0 1.14 0.12 3.52 0.38 0.94 16.0 17.3 0.62 1.50 0.13 3.87 0.39 0.97 0.24 0.26 1.0 132 111 110 103 103 1.5 1.5 1 2 3 4 5 6 7 8 3 . 2). 1. 7-8, 5 2 (a). kobs·102, -1 -1 -1 N, -1 4248 62 74 142 21 38 10188 12600 118 1.72 2.05 3.95 0.58 1.08 283 350 1.9 1.5 18.5 1.1 1.6 1.1 17.7 20.2 2. 1-3, 7 2 . 2 kef. 105, a, 1 2 3 7 , a -1 0.23 3.1±0.2 0.57 1.92 2.8±0.1 2.1±0.1 0.95 4.3±0.1 2.3 7.87 2.0±0.1 6.1±0.4 0.93 16±2 2.3 7.73 4.5±0.2 4.2±0.2 0.45 1.1±0.1 0.95 2.34 1.5±0.1 3.3±0.2 2.3 3 . 3 . , . Cr- , 2. a. 2 a = 7.87 . 7 160 2 6.1·10-5 -1 ( 2.34 . 2). a 0.45 7 . , a = 0.95 ( . 1). . 1. hl 1 . Al 7 ( , ). . , , . 2 . 2 , ( ) - , ) – , . , , ( 3·10-5 ,2 , . 2). , . 161 140 120 So/S 100 80 60 40 20 0 0 0,001 0,002 0,003 0,004 0,005 0,006 [NADP], . 2. . 1 (a = 0.063 ) . 3). . . 80 2 162 1 (a = 0.015 . 4). 2( ) 1.7 1 1.00 1.6 0.98 1.5 0.94 1.4 D/D0 0.96 D/D0 2 0.92 1.3 0.90 1.2 0.88 1.1 1 0.86 2 1.0 0.84 0 10 20 30 40 50 60 70 0.9 0 t, 10 20 30 40 50 60 70 80 t, . 3. (2) (1) (1) 2 2. . 4. (2) 2 2 2. 2 . ( ), . , 2 2 , 2 – – 2 in vitro . . – . ( . 4), . . – 77 , . . – 0.23, 0.57 ) (Fluka), 2,3,9,10,16,17,23,24( . 5) )). 0.009, 0.016 1.92 . – 0.125 (2,6- ( ( . ), . 163 RO RO OR N N N N M N N N N N N N N M N N N N RO RO RO OR RO OR OR OR OR OR RO H3C R= H3C N RO N OR N N M N N N N RO M = HH M = Zn OR OR RO . 5. . ), KSV ( Joyce Loebl SnO2- ) . (SnO2 ), – 0,3 2 . 20 . – . . , , 103 (RH) ( , , 107 ). SnO2 0,1 KCl. ) (Sigma) (10-6 ) ( ; +4 , Shimadzu . UV-250, Shimadzu 5300. , GAUSSIAN 03. , 1:4, 2:3, 3:2, 4:1. , . , . , , , ( 164 . 6). . 7. RH = 10 80 0,4 0,3 0,2 0,1 6 2 60 , RH = 10 675 714 300 400 500 600 800 704 0 300 400 500 600 700 350 0,15 RH = 10 800 734 698 0,10 0,05 20 0,4 0,3 0,2 0,1 0 0 20 40 100 % 60 80 H2 100 , 300 400 354 500 600 700 800 714 2 300 400 500 600 700 800 % 2 SnO2 . . 7. , 2 ( (1 – 100% -5 2 675 ) ( 1 . 6. ,[ 700 668 1 4 20 ) 351 5 4 40 2 354 ] = 10 = 15 ), ; 2 – 80 .% 2 ( 2 - , / 20 .% ), [ ] = 10-6 ). ) L. (0,05 ) KCl, . . , . , , , , . , 1, . . 8. , LUMO ( 1) .8 . . 8. , ( 1) 165 . ) ( 1), , , . ( 1, , ). 3. 2,4.10-4 ( , 1 2 3 4 Co/1,0 Fe1,3 Cu/1,5 Mg1,7 ). Uph – , , Iph – – , – , Uph Iph Uph Iph Uph Iph Uph Iph 62 126 165 196 0,4 1,2 3,5 5,8 76 137 175 205 0,7 1,2 3,9 6,3 52 111 152 175 0,3 0,7 2,9 4,9 48 105 147 168 0,2 0,6 2,7 4,7 . ( – 12% ). . ( , ) 5,6%. ( , , , ) . 2 ( ) 50 . 5% 5 2 10 , 50 . , , . , , . , , , . 4,5 ) (10-3 500 1000 . 5 3 . , . 166 . . - ", . . . 2009 , , ( , . ) , , , , . . 4 . 167 : . , . : . , . . , . , . , . , . , . . 2009 . , , [AO -––H +] : . , , , . , , , ( ( ) 4 - ) - + + , ), . , - [A R< 0,01M ( , + ]• 0,1 , R ), [A - + R .. ]• , , – . , , 168 ( ) 1. 1. , (Flu ( , , , )+h (Flu)* , Flu•+ + e–) . ( ), ( ). ( lectron catch) ( ) . + ( AO -––H ) + ( ): e + ( H ( . )• ( )– + H•. , . ). , , AO -––H +, , . 169 , . pK :e + AO ––H + [AO ––H•] • H (g = 2.0023, A = 50.21 ), . ( .1) AO– + H• 1 1 * x0.75 2 3 * 4 * 2 * 4 3 . . 1. , (240 77 (Trp) 400 ) 2 W. 200 W. 1- 0.5N H2SO4 (pH= 0.8); 2- 0.5M NaH2PO4 (pH= 4.1); 3- 0.5M H3BO3 (pH= 9.0); 4- 0.5M HCl (pH= 0.6) ( ). , . , , (77 ) AOH HCl (H3O+), H2SO4(H3O+, HS , 4 - ), H2 4 - , H3BO3 ( 0,1–1,0 , , ) , ), (240 400 , ), R. , , pK . ( , ( 170 . 2). ). , B A C 1 2 3 3000 3300 3600 . 2. 3000 3300 3600 3640 3650 3660 3670 3680 , Trp (1 ) D2O ( ). .2 D2O ( ) (pH=4.5); 3- 0.5M H3BO3 (pH=8.6) : 1- 0.5 ( ) H2SO4 (pH=1.1); 2- 0.5M NaH2PO4 H/D 30 77 7 H/D . , [H2 4 - ]• [D2PO4]•, H D. R pK , pK ( H2PO4 . 1,3). - - HSO4 H3BO3 1.2 Double integral, a.u. 1.0 0.8 0.6 0.4 0.2 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 pH . 3. . , AO H, . , pH , . , 171 - + ––H pK ( . 3), , ( ) , ( 1). . , (H2 4 - pK ( 7.21) ( 9.24) pH, AO -––H +:( . H 2 PO 4 , HPO 42 , H 2 SO4 , HSO4 2.8 1.92), . 3) B OH 4 , HOX n ) ,( , , . 1. HOX n HOX n 1 HOX n , HOX n 1 ( , HOX ) n HOX .1( n 1 . , , , ). MP2 Gaussian 03 aug-cc-pVDZ. . . 4. , , ( , ) 2 : H 2 PO 4 , HPO 4 , H 2 SO4 , HSO4 B OH 4 . . , » . pK 2 4 H 2 SO4 - HSO4 - H 2 PO 4 - HPO - B OH 4 ). 172 , « » ( 0,79 – ). , ( ), ( , 4,5 ). – ( lectron relay) . , , , ) . D ). A ( , , , , . . ( ). , , , , , , . : . + ( AO -––H ) + ( ): e + ( H ( . )• ( )– + H•. , . ). , , AO -––H +, , . , . pK :e + AO ––H + [AO ––H•] H• (g = 2.0023, A = 50.21 ), . ( .1) , . AO– + H• R [AO–H]• , . , R R 173 , R( . [AO–H]• , , R• ( , ), 1, .3, 5,6, 7). , ( . 5,7). 2 1 1.0 3 0.8 IH/IH(max) 0.6 0.4 0.2 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 pH . 5. R , ( >240nm, >320 77 ( - , HSO4-(1); H2PO4- (2) - NO2, -VO H3BO3 (3) (2+) , ) 0.5 ). . , - 0,1 , 77 1,4-1,7 , ( )( 0,01 5,0 5, 6). , R, 0,01 , , 0,1 , ( 174 .5,6). , 0.6 3350 0.4 3400 3450 3500 S, a.u. , 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 [Pi], M . 6. NO2 ( ) ( ) ( + Pi Trp+Pi+KNO3 ). ( 77 , NO2. – 0.5 KNO3 – 0.01 Trp - = 5.0. : Trp - 5·10-4, Pi ). NO2 Trp ( = 5.0, ( KNO3 ) ). Tsp(0.005M)+Thy(0.03M)+Pi(0.5M) 15000 pH=4 pH=6.7 pH=8.7 10000 5000 0 -5000 -10000 -15000 3300 3350 3400 3450 3500 3550 Magnetic field, G . 7. (0.03M) 0.5 (0.005M) 8 . ( >340 ) ), 77 . 175 , ( 4 ( , ) OH, NH, CH), , . , [H+] , . . 2009 . , , - - , . 428, + 4, . 474–479 2009 O. S. Nedelina*, O. N. Brzhevskaya, E. N. Degtyarev, A. V. Zubkov Chapter 29. “Dissociative attachment of low-energy electrons (below ionization or electronic excitation thresholda) in frozen aqueous phosphate solutions” Monomers, Oligomers, Polymers, Composites and Nanocomposites Research: Synthesis, Properties and Applications Nova Science 2009 1 p48 176 2009 : : . , . . . , . , . . 1. . , , . , – , . . , , . ? , , , . . – , , . , ? , . , , , . . , . 1. , , . , . . 2. , , , . , , , , . . 177 , , . , . . . . . 3. , , , , . . . , , . , . , , . 4. , , . – , . . . , , , , . . 5. , , . 6. , , . . , ( ), « « ». , . . » , . . 7. . , . , , , . . , , , , , . , , . , , . 178 , , , . 2. , , . , . ( . , , . ). , , . , , , , . , ). , , – « ». . . , , . – , . . , , . , , ( ), , , . . , . , , , . , , , , . . , , . . 179 3. , , . , , . – . , , , . , . , , , . ( ) . , , . , , , . , . , . , . , , . , , . . , , . , . , . , . , , , . , . . 180 , , . – ? , . , . . , ( ), , . , , . . , . , , , . , , , . . , , , . 4. , , . 4.1. C1-C2 . 1. 0.1 Å. C2 C1-C2 C16-C17 C17-H34 C16-C17-H34 . 181 4 16 x 10 14 12 10 8 6 4 2 0 0 . 2. 1 2 3 4 5 6 7 , 8 C16-C17 , . C17-H34 C17-H34 C16- . C-C , H. H19 C1-C2-H19 C1-C2-H19 C16-C17-H34 C1-C2 C17-H34 . 182 0.5 4 16 x 10 14 12 10 8 6 4 2 0 0 0.5 1 1.5 . 3. . C-C-H , , , . , , 1. . C-C , , , C9 , , . , . , , , , ( , – ). 4.2. , , ( ) . , . , , , , . 183 4.3. 5. , : 1. , , . 2. , , , « » « » « » , . , « » . , . 3. , . , . 4. , , 184 ». , . : : . , . . . , . . , , . , . , . . , . , EA 1110 DELTA Plus (ThermoElectron, ), , ( « , . UDR, ) ». . 1. , , ., 2008 . ( , ., , ) , ., . , – . , . (HClO4) ( . . 1), . 5, – 1. – 5 , 1. ) – ( . , , . – 3 ), 5, 3 – Open University 5– . 3 200 1400 -(17.2±1.0) ‰, o . 700 (74%) 900 o . 13 C – -(17.8±1.0) ‰. , , (500-600 C). 185 , . 5 . 1200 , 2. , 13 C , -(17.4±1.0) ‰. , 13 -(17.3±0.5)‰. , , . . , 500 . L. – , , . 1993 . Thorsberg (Kinnekulle) (~480 . ) 80 20 (Heck et al., 2004; Schmitz et al., 2009). , , , . , L, ., . ~1 , , , Schmitz et al. (2003) , ( ) , , Heck . , ( ~1-2 , 4 . (2004, 2008) , . ) ( , 20,21,22 Ne , ~1 ) . (~2700 2 , ) , , 0.2 . ~470 . Thorsberg L- . . , , . ~1-2 . 480 . . 186 . 1. ( UDR) « ». 187 . 1: 1. (1000 g, 2-3 ) ~80 C. 2. . 3. 3. (~1:1) , . 4. 5. . " 1. ., …" ., : ., ., ., . // « » 1(27)’2009. (Alexeev V.A., Ivliev A.I., Kuznetsova O.V., Sevastyanov V.S., Semenova L.F., Fisenko A.V. Heterogeneity of isotope composition of carbon of ultradisperse detonation diamond). URL: http://www.scgis.ru/russian/cp1251/h_dgggms/1-2009/informbul-1_2009/planet4.pdf URL: http://www.scgis.ru/russian/cp1251/h_dgggms/1-2009/informbul-1_2009/planet4e.pdf 2. ., ., ., ., ., . // -2009, . 3-4. 3. ., ., ., ., ., . // , . , , 2009. 4. . // . 2009 ( ). 188 : : . , . . . , , . . , . , . , . , . . , , -, - ( . 1), , . , “ -II” (PGII), 31 ( = -76.9 , ; . 2) “ = 145.3 ) , , PGII ”. , , . , . , , , , . , , , . , , -II, . . ( ), [H-Gly4-NH(CH2)5]2, . 1. ( 32 , , , r =80). PCFF . : V Vb V V VVdW Ve V Surf . (1) 189 Vb V - , V , VVdW - , Ve - . rRF=20 Å. . 3.35 Å) 1780 Å2, 1.42 Å , . , ; 4 kT. , . ( (001) KAl2(Si3 Al)O10(OH)2) 20Å. , 1800Å2. , Z. (NVT- , , = 300 , (r-RESPA). ). –“ , , rs=5Å, rl=20 Å ( 3 - 4.5 . STRIDE = 30 , =2 s s =0.2 ) “ ” ”. ). DSSP. , , , , . . , ). , , – , . , ( ). , . ( - 15Å) ( Z 5Å). 3), , . . . . , ( 2). , PGII . 190 ( PGII ( . 3). ; 20Å, . , ; ( ) . , , , ), . : , G , exp G , / k BT / - exp G , / k BT d d , (2) . , , =-60; =60 – =-60). =60; ( ’ . 8), ( , , 0,389) , , . ( 0,08). . , =145,3 – =-76,9; , PGII. , , PGII. , , , . , “ , ” – . , PGII . 191 O H N H nR H-Glyn-R; n>5; R= -OH, -NH2 O H N H H N nN H N H H n O ; n>3 O H H H H N H N O nN H O H O nN H CH3 nN O H H N H N O H H N nH O nN H nN H H N N H H N N H nH tetra-Glyn; n>6 tri-Glyn; n>6 . 1. , . . 2. , . , U- ( ) . , , . N- , , . , . 192 ) ) . 3. ( ) ( ). 1. . ( DL(10-6 – 10-6 ) ) 10-4 ( 5,5 7,5, , ). 1 , 5 15 . , ). ( NaPO3 ), ( ( Na2H2P2O7 2 ), - Na6P6O18 ). ( 180 ) – 100 . – 3 3 (25mM . . ( – 50mM 0 80%) ) 193 ( 5. 10-7 2. ). 9. 910-4 – 10-6 ) ( 10-3 ) ( (~ 10 -3 ) 8,5 – 9,0. ( 10-4 ) – ( 20 ). , , . , , . 1N6 ( ( ~ 12): NH2 N N N N Rib Me2SO4 MeSO4 NaOH, pH ~12 NaOH, pH 6 NHMe NH N N N N Me N N N Rib Rib H+ H+ NHMe NH N N H 11. 194 N N Me N N H N N6 N N 6), 1- ), . . Dowex-50 4 (200-400 ) + (2:1). 1 (2:1). , N6 1- . , 1 , . – , . . . , (6- , 9- -6- , 9- ) , 4,6- -5- : Cl O2N MeNH2 N Cl [H] N H2N Cl O2N Cl N N Cl N NH3 MeHN N Cl [H] H2N N Cl H2N H2N N N MeHN Cl N NH2 N Cl N N NH3 N N N N N H N N N Me Me2NH 9- N NMe2 Me NHMe MeNH2 N N Me 9- N N N N H N N 6- -6- 2. 195 4,6- -5- , : O HC NH3 CH2(CO2Et)2 CH2(CONH)2 OH NH2 N NaOEt HO N HNO3 OH Cl O2N Cl 4,6- POCl3 N O2N HO N N N -5- 3. . , 4,6- . 4,6- -5- 68%), 4,6- -5- 80%. 2. 196 ( POCl3 , : : . . , . . 2009 ( , ) . . 1 , , . . 1. . -1 , - 2. , - 3 . 0,10 . U-1 4, . - 5 . - 6 - 7. 197 -250. - 8 , , . -01/3. ( )- 9, -10 -11 . , -5- - . , . -3 , 45 . 10 10-3 5- 2 10-3 . 10 10 0,5 , , . " 0,02 -7" 0,02 - . .2 +700 . 2 .3. . , , , , . 18 . 2 2- . 3600 , 1200 . 198 ( ) 1 10-9 . , 2400 . . 2. . =700 -2 2- 14000 12000 10000 8000 6000 4000 2000 0 0 2 4 6 8 10 12 10-9 . 3. . , , 600 -850 . (1200-2200 ) -5- 199 . , . (10 -10-4 ) , . , . 10-15% , . , , , , . 200 , : : . . , . . , . , * , , . , . , . - , , . , . , . , , (Cronin and Pizarello, 1997; Cooper et al., 1992; , . (Delsemme, 1992; Greenberg, 1993), 14% , , , 2001). , . HCN , . , , . , , , . , , , . , ( . 2 ) , 3 . , , , , , , 201 . CH4, NH3, H2O (Draine, 2003). . – — . . Fe — ; Mg Fe2[SiO4]. (Mg,Fe)2[SiO4]. Mg2[SiO4] : ) (145 ) . , , , . . – (MgxFe1-x)2Si04. 0.2 . , ( , 8094) (MgFe)2Si2O6, SiO2 . ), “Serva” 486,44 3 NaH2PO4. . 312,00 . . . (HPLC) . . 98%. . 0.7 : Symmetry-C18, : 0.012 97.5:2.5. , - 25 , : extra pure (Merck, Germany) “ ”. Alliance (Waters, USA), , , 3.9*150 (Waters, USA). , 0.01 ( 3.4) : - 250 ; - 254 Bruker Esquire LC GMBH», . m/z 2200. 202 MS c , . – , . «Bruker Daltonik , 50 SmartSelectTM . HPLC esquireControlTM SmartSuite, . DataAnalysisTM, . m/z. . 50% NH4. 240 µl/h. : . m/z. m/z. 0.1%. . 1. ( 5' : ) (4.31%), 2' (0.76 %). 1 , , 21.25*105 J*m-2. . *( % 1. Phe) + , , ). 145 nm, 21.25*105 J*m-2 (5) 5' 2.940 SiO2 1.930 3.190 4.310 2' 0.760 0.093 0.086 0.420 2'3' 0.962 5.770 0.110 3.386 4.730 5' 0.780 3' 0.043 8.616 * 4.662 : 5' , 2' , 2'3' (145 ) , , 5' 8.616% , 3' . . 5' , , , , , . 203 5' 1. , . 3.386 %, , , 8.616 % ( ). , . , 1.84 . , . « » , , . . . SiO2 . . . , . , , . 66% – 24%. , . 1. 5' ( % 5' ). 1 – SiO2. 5' . 204 ( ). 2 - , (Chyba, Sagan, 1992). , , (Paecht- Horowitz, 1988). (Brownlee et al., 2006, Lambert, 2008). , , , – . , , . 11» « . « » (Kuzicheva, Simakov, 1999; Kuzicheva, Gontareva, 2001). , SiO2 . , , , . (Kuzicheva, Gontareva, 1999; Kuzicheva, Simakov, 1999) , , . , , , (Delsemme, 1998; Greenberg, 1993). 1. . . 2001. : . // .: URSS. 256 c. 2. Brownlee D., Tsou P., Aléon J., Conel M., Araki T., Bajt S., Baratta G. A., Bastien R., Bland Ph., Bleuet P., Borg J., Bradley J. P., Brearley A., Brenker F., Brennan S., Bridges J. C., Browning N.D., Brucato J. R., Bullock E., Burchell M. J., Busemann H., Butterworth A., Chaussidon M., Cheuvront A., Chi M., Cintala M. J., Clark B. C., Clemett S. J., Cody G, Colangeli L., Cooper G., Cordier P., Daghlian C., Dai Z., D'Hendecourt L., Djouadi Z., Dominguez G., Duxbury T., Dworkin J.P., Ebel D. S., Economou T. E., Fakra S., Fairey S., Fallon S., Ferrini G., Ferroir T., Fleckenstein H., Floss C., Flynn G., Franchi I. A., Fries M., Gainsforth Z., Gallien J.-P., Genge M., Gilles M. K., Gillet Ph., Gilmour J., Glavin D. P., Gounelle M., Grady M. M., Graham G. A., Grant P. G., Green S. F., Grossemy F., Grossman L., Grossman J. N., Guan Y., Hagiya K., Harvey R., Heck Ph., Herzog G. F., Hoppe P., Hörz F., 205 Huth J., Hutcheon I. D., Ignatyev K., Ishii H., Ito M., Jacob D., Jacobsen Ch., Jacobsen S., Jones S., Joswiak D., Jurewicz A., Kearsley A. T., Keller L. P., Khodja H., Kilcoyne D., Kissel J., Krot A., Langenhorst F., Lanzirotti A., Le L., Leshin L. A., Leitner J., Lemelle L., Leroux H., Liu M., Luening K., Lyon I., MacPherson G., Marcus M. A., Marhas K., Marty B., Matrajt B., McKeegan K., Meibom A., Mennella V., Messenger K., Messenger S., Mikouchi T., Mostefaoui S., Nakamura T., Nakano T., Newville M., Nittler L. R., Ohnishi I., Ohsumi K., Okudaira K., Papanastassiou D. A., Palma R., Palumbo M. E., Pepin R. O., Perkins D., Perronnet M., Pianetta P., Rao W., Rietmeijer F., Robert F., Rost D., Rotundi A., Ryan R., Sandford S. A., Schwandt C. S., See T. H., Schlutter D., Sheffield-Parker J., Simionovici A., Simon S., Sitnitsky I., Snead Ch. J., Spencer M. K., Stadermann F. J., Steele A., Stephan T., Stroud R., Susini J., Sutton S. R., Suzuki Y., Taheri M., Taylor S., Teslich N., Tomeoka K., Tomioka N., Toppani A., TrigoRodríguez J. M., Troadec D., Tsuchiyama A., Tuzzolino A. J., Tyliszczak T., K. Velbel U. M., Vellenga J., Vicenzi E., Vincze L., Warren J., Weber I., Weisberg M., Westphal A. J., Wirick S., Wooden D., Wopenka B., Wozniakiewicz P., Wright I., Yabuta H., Yano H., Young E. D., Zare R. N., Zega T., Ziegler K., Zimmerman L., Zinner E., Zolensky M. Comet 81P/Wild 2 under a microscope// Science. 2006. V. 314. P. 1711-1716. 3. Chyba C. F., Sagan C. Endogenous production, exogenous delivery and impact-stock synthesis of organic molecules: an inventory for the origins of life// Nature. 1992. V. 355. P. 125-132. 4. Cooper G. W., Onwo W. M., Cronin J. R. Alkyl Phosphonic Acids in Murchinson Meteorite// Geochim. Cosmochim. Acta, 1992. V. 56. P. 4109-4115. 5. Cronin, J. R., Pizarello S. Enantiomeric Excesses in Meteoritic Amino Acids// Science. 1997. V. 275. P. 951-955. 6. Delsemme A. H. Cosmic origin of the biosphere// In: The molecular origins of life: assembling pieces of the puzzle. Cambridge University Press. 1998. P. 100-118. 7. Greenberg J. M. Physical and Chemical composition of Comets. From Interstellar Space to the Earth// In: The Chemistry of Life Origin. Kluwer. 1993. P. 195-207. 8. Kuzicheva E. A., Gontareva N. B. The Possibility of Nucleotide Abiogenic Synthesis in Conditions of «Cosmos-2044» Satellite Space Flight// Adv. In Space Res. 1999. V. 23. P. 393396. 9. Kuzicheva E. A., Simakov M. B. Abiogenic Synthesis of Nucleotides in Conditions of Space Flight of Biosputnik «Bion-11»// Adv. Space Res., 1999. V. 23. P. 387-391. 10. Kuzicheva E. A., Gontareva N. B. Study of the peptide prebiotic synthesis in context of exobiological investigations on earth orbit// Adv. In Space Res. 2001. V. 23. P. 393-396. 11. Paecht-Horowitz M., Eirich F. R. The polymerization of amino acid adenylates on sodium montmorillonite with pre-absorbed polypeptides// Orig. Life Evol. Bioshpere. 1988. V. 18. P. 359-387. 206 : : . . . , . 1. . , . , ( ). , . « , », , , . , . – , . , . ( ) . ( Gof,T) , , ( ( ) ). , . , -N . , , 207 , ( 2 , ). 1. . : G0T,P = G0f – S0Tr,Pr (T – Tr) + T Tr C 0PdT - T T Tr C 0P dlnT + P Pr V 0 dP, G0f (Tr) , (Pr) 298,15 K , , , S0, C0P 1 V0 . . , » « » , . , . , – , . , , ( ) = 2 ) + 0,5 2 ( 2 ), . , , , ( ) . 2. ) , 3- (3- ) ( - 2 ( . 1). (7), 2 2 , 4 2, 2 , ( (7), (8) (1), 208 ) , . 2). 4 32, . 2 2 ) (7) ( (1), (13) (12) 2 4), . 1. , 3: 2,O2, H2O, CO2, CO, C; II ; III ; IV – , 3 – , , 6 – , 7 – , 3, , 11 – , 12 – . I – : 3, 4 – – . 1 – , ,8– , 4 2 , , 13 – 6 , 2 4 , 2 – , 5 – ,9– , 10 – . 4 2 4 , , ). , , , ( 2 4 2 13 -10 – -15‰). 4 - 2 4 4, 2. , 3- , , 2 (7) 4 2 2 4 2, . , . 2 – ( - µ 2). ( 500 273 – 900 ( G0T, ) , , . 2, (373.9°C, 220.4 . ( , . 407°C, 298.5 ( – )). ), 2 a 2 – ) . (µ , = RTlna , 2 O2 ) 209 . , ) , ( ( ) . , C2H4 ( ) . ) + 2CH3COOH ( ( 2 4 = 614 , ) + (CH2)2(COOH)2 ( ) = C2H6 ( + 2 = ), ), 3 . ( 3- ) . , 457 , , . . . 2. –( 2 = RTlnaO2) ( 3). . (Fe2O3)– (SiO2) – (Fe3O4), (FeS2) – (Fe2SiO4) – . 210 (FeS) – . 4 – –( 3 2 )2 , . )2 , , – (SiO2- Fe3O4-Fe2SiO4) – (Fe2O3-Fe3O4) . (FeS2-FeS-Fe3O4). – – 307 – ( – 3- . , , 2 ). – . 500 . 3), , . , – ( . 3). ( 4 III) – – ( 3 2 )2 ). – )2 ( = 500 . 2, – ~670 . , 2. , 2 . 211 . 3. 3– 500 2 . . III – - 2. 2 . . 2. 3. 33- 2 , . – – – :( 2 )2 )2 ( )2 )2 )( 2 . (AFC) 4), 13 – , , C (0 – -12‰), . 212 )2 . , 2 , 3( 2, ( . Crenarchaeota) . , . 4. (AFC). 3– 2 , – ( , – 3- ). . , , - , - , . AFC. . 2 AFC , ( , , - .) . ), = ~ 400-600 ( .2), . ( = ~ 400-700 = 500 . 3) Fe3O4, FeS FeS2 AFC , (Fe5NiS8), . , (Fe3S4), (Fe4NiS5) – . , ( AFC ) (“robustness”), ( . 2, 3). ( . 4), 213 )2 )2 + 2 = ( 2 )2 , )2 . » (“redox switch”), « - . 4. Marakushev S. A. and Belonogova O. V., The parageneses thermodynamic analysis of chemoautotrophic 2 fixation archaic cycle components, their stability and self-organization in hydrothermal systems, J. Theoret. Biol. 2009. V. 257. P. 588-597. . . . : « « »: 15 . 1994-2009». . ISBN 978-5-9710-0262-8. (2009). . 32-41. . . : « 2. »: 15 . 1994-2009». . ISBN 978-5-9710-0262-8. (2009). . 42-50. 5. S.A. MARAKUSHEV, O.V. BELONOGOVA, Biomimetic Catalysis of Archaic Chemoautotrophic CO2 Fixation Reactions in Hydrothermal Environments. VIII International Conference. "Mechanisms of Catalytic Reactions", dedicated to the 70th anniversary of Professor Kirill I. Zamaraev ( ), Novosibirsk Scientific Center, Russia, on June 28 - July 2, 2009. LECTURES ABSTRACTS: P. 148. C. . . ( ), 2. :« « ». .2-4 . 2009 . . . . ( ), : « ». .2-4 . 2009 . Sergey Marakushev, Ol’ga Belonogova, “Metabolic Design and Biomimetic Catalysis Of Archaic Chemoautotrophic CO2 Fixation Pathways in Hydrothermal Environments”. INTERNATIONAL CONFERENCE BIOCATALYSIS-2009: FUNDAMENTALS & APPLICATIONS 2009 . ( ), . , , 19-24, 2009, LECTURES ABSTRACTS: P. 32-33. 214 : : . , . . , . . , . , . , . . 14.04.09 ( ) . [1,2]- , . . . 1. ( 300) , . . . . , , L- : ; , , . , D- , , (0), ( ) ( ), . D L, , . 215 . 1. , [1-5], . 216 . . , , . , . – . , . , , . , , . , , , . , . , . , , , – , , L- L, , . , . . , . , . , . , , , , . . , . 2010 . 217 1. +16 . 2. 3. . . . ( p ). . .:" .:" ", 1976, ", 1984, 112 . ). 1999, ( .: . 40 . + . 4. Malygin A.G. Structural symmetry of the metabolic reaction network. I.Carboxylic acid. metabolism. J. Mol. Med. V.78, 2, 2000, pp. 66-73. 5. . . . . 69, 12, 2004, . 1691-1699. 218 : : . , . , .- . . . , . , . , . . , , , " " ( ) , , . " " Chem. 92, 6881-6887 (1988); 873 (1996)). , ., , « , : , " . , « (Eigen M., McCaskill J., Schuster P. //J. Phys. . ., . . // , 166(8), » , « » ? " , , » , (Vladik Avetisov in Progress in Biological Chirality, Eds. G. Pályi, C. Zucchi, L. Caglioti (Elsevier: Amsterdam, 2004) Chapter I, pp3-12). , . , ( ) , ( ). , , . ., . . 414(3) 309 (2007)), . " , " , , , . . . ( ., , Zhuravlev Yu. N., Avetisov V. A. The definition of life in the context of its origin. BioGeosciences 3, 281-291 (2006); Y. N. Zhuravlev, V. A. Avetisov, Hierarchical scal-free representation of biological realm – its origin and evolution. In Biosphere Origin and Evolution, Eds. N. Dobretsov et al. (Elsevier: Amsterdam, 2008) Part II, 69-89) " ". ( . . 15, II) ( ) ( ) . , , . 219 , . " ", . , , . , , . , . , , , , , . , , , , , . , , , . . , , , ) , ) , ( ( ") " " . , , . " " " , - . , . , , , , , . ( ) . , . , ), ( , . , . , , , , . , , , . , . , , , , . , , , . . 2010 . 220 . , , « », , . , , ( , ) , . , , , , , , , . ., ( , 166(8), 873 (1996)). . . . , , , . . , , . : ? , , ? , , . , . , , , , , , . ( ., , Avetisov V. A., Bikulov A. Kh. Protein ultrametricity and spectral diffusion in deeply frozen proteins. Biophys. Rev. and Lett. 3, 387-396 (2008)). , 2009 . , ., . ., . : . ., . ., .// . . , .136, . 3(9), .566-588 2010 . (2009). , ( , ), ". . , , , . (scale-free) , , , , . : , ? . , " " " , ". , , , , . " , 221 . , . , . , " , " . , . . , ( ) . , ( ) . , , , . ., . ., . (2009), ., . . ., .// . . , .136, 3(9), .566-588 15(I). . , . 2010 . 2009 .: 1. . ., . ., . ., . ., . . , .136, .// 3(9), .566-588 (2009) 2. Zhuravlev Yu. N., Avetisov V. A. On the entity-set representation of biological objects. (submitted to Biology Direct) 222 , : : . . , , . . . , , . . . , , . . , , . . . . , 2009 . , , , [1]. , , “ ”, ( – , ). [2, 3] , , , . 1. T 10-5 (pH 6.0–7.0, ( 10-2 M). , )- [2, 3]. , [3]. [2, 3], 85–90°C: , [2, 3] - . ( . 1). 223 , (0–4º ) ( . ( ) « ) , » , . ( ) - ( ). « » , . 10°C) ( , - . . , ( ) . ( , ), . . 1. Ade Thy Na+ Thy - ~ 0º 6º [3]. , , ( , , , ). . «Sigma» – , , KMnO4. = 260 40–50 ( = 260 ), pH = 7.0 «Calbiochem»), 224 , ( . (Na2HPO4: NaH2PO4, = 6.0), . , . , «Hitachi-850» . , . 1. 10-5 ( 10-2 M) T (pH 6.0–7.0). . 350 320 ( ( = 260 ) 395–405, 440–450 300 , . 2). 520 , , 380, . 425, 435, 455 510 . , , , . 350 395 405 435 440 425 455 1,0 320 380 . 0,8 . 510 520 0,6 I, 350 320 0,4 425 510 450 300 0,2 260 0,0 300 350 400 . 2. – 450 Ura, = 2·10-5 , nm 500 , , ( ). . ( . 3) , 270 = 350 ). 250, 275, 285 = 410 320 . ( 450 250, 260, 285, 325, 355 370 . = 500 225 , 285, 345 395 . 285 275 0,6 250 0,5 . 0,4 250 260 0,3 450 . I, 410 260 285 275 320 355 0,2 285 ) 0,1 500 a) 370 345 395 0,0 240 260 280 300 320 . 3. ) – Ura, ); ) Ade9/Ade7 ( 340 360 = 2·10-5 . 380 , , nm 400 , ( ). , . [4, 5], . ( .4). . 4. . 226 , S. Nikitine [6], , . , 380 2 455 , = 260 3, ( 2 = 410 = 250 ( 1 1 = 40000 -1 = 38460 ) 2, -1 = 285 ( = 35090 ) 4 4 -1 1300–1500 = 450 -1 ) 3 = 275 ( 3 , 3 = 275 , 4 395 = 285 ) ~1375 . -1 .4), ) -1 4. , 3400– ( 1 = 250 , 395 -1. 3600 2 = 260 405 , . .3) 1 ( . = 36360 ( , 405 6, 7. 2. 0 10°C. 400 ( .5). ( 1–2°C) , ( 50%) , , « . », ~70% . 3–7°C ( 10–15% , 3 7 °C) ~10°C. , 4°C « 10°C » . 227 . 0,4 1.5° ~1.7° 1.5° 2.0° 1.7° 1.7° 1.7° 3° 5° 7° 8° 8° 5° 3° 1° I, . . 0,3 0,2 0.8° 0,1 0,0 0 10 , 40 . 5. ( = 320 , = 410 ) . Ade = -3 Ura = 1.5·10 . . . 6 . , , – , , . . . . I, . . 38 . 36 34 0 1 2 3 4 . 6. 2 10 °C, = 320 , = 410 . [2] 228 . ( ) , , . (~1400 -1 ) -1 (~3500 ) . [3]. 2. DFT/B3LYP/6-31+G(d) Ade Ade N7 H . (ApA). ab initio 31++G(d,p) ) DFT- E(MP2) Ade, . , TDDFT/PBE/6-31+G(d) (PCM). MP2/6R N7H Ade . GAUSSIAN-03 [7], (https://hpc.apmath.spbu.ru/ ). HPC- N7 , , . Ade , N9H (Ade9) N1, N3, N7 – [8] N7H (Ade7), N9, . B3LYP/6-31G+(d) N7H ( . .1), , , , , ). 229 Ade7 (C1) Ade7 (C1) (PCM) Eg = -467.326748 a. . = -6.662 = -1.232 d = 6.99 D Es = -467.366762 a. . = -6.418 = -1.076 d = 11.46 D .1. N7 H . B3LYP/6-31+G(d) ( . .1), N7H ) 0.04 a.u. ( 1.09 . 0.2 ) . ( 1.64 ) Ade7 : 6.99 D 11.46 D. N9H (0.73 ( -0.04 ), Ade9 ) : 2.41 D 3.46 D, . Ade7 Ade ( ), R = 3.4 Å = 36 ( . .2). [9], Ade7 Ade9 72%. Ade7 : Ade9 = 28% : Ade, , , , N7H N9H . : Ade9/Ade9, Ade9/Ade7, Ade7/Ade9 , , ApA Ade7/Ade7. , . Ade9/Ade9 ApA . 2. 230 Ade9/Ade9 . , B3LYP/6-31+G(d) ( Ade9/Ade9 R 3.49 Å, = 36° E = -934.748656 a. . = -6.263 = -1.040 d = 6.79 D = -0.284 Ade9/Ade7 R 3.46 Å, = 36° E = -934.740836 a. . = -6.259 = -1.196 d = 14.40 D = -0.133 Ade7/Ade9 R 3.42 Å, = 36° E = -934.742169 a. . = -6.314 = -1.091 d = 10.62 D = -0.169 . . 3): Ade7/Ade7 R 3.67 Å, = 36° E = -934.735030 a. . = -6.366 = -1.199 d = 21.05 D = -0.041 . 3. Ade. - , R = 3.42 3.67 Å. Ade9/Ade9: Ade9/Ade7 = -0.169 , 0.133 Ade7/Ade7 = -0.284 . : =- Ade7/Ade9 . = -0.041 , . , Ade9; Ade7/Ade9 Ade7/Ade7 – Ade7/Ade9 – Ade9; Ade Ade9/Ade7 – ( Ade9/Ade9 Ade7). Ade9/Ade7 ( Ade9/Ade9 Ade7). , . , Ade7/Ade7 – [8, 9], ( ) . , , [10], ab initio (BSSE). , [13], , ). ab initio DFT . ab initio E(MP2) Ade. MP2/6-31++G(d,p) ) R 2.9 3.6 Å R 0.05 Å. 4. 231 , E(MP2) R = 3.20 3.25 Å, Ade , B3LYPR 3.42 3.67 Å. MP2N7H N9H E : E(Ade9/Ade9) = -0.558 E(Ade9/Ade7) = -0.595 E(Ade7/Ade9) = -0.498 E(Ade7/Ade7) = -0.564 R = 3.20 Å; R = 3.20 Å; R = 3.25 Å; R = 3.20 Å. E(MP2), a.u. -932,116 -932,118 Ade7/Ade7 Ade7/Ade9 Ade9/Ade7 -932,120 -932,122 Ade9/Ade9 -932,124 -932,126 R, A -932,128 2,8 2,9 3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 . 4. E(MP2) Ade. ) B3LYPAde 3,8 R E -0.04 - -0.28 . - . ab initio (CASPT2 CCSD (T)), . N7 , N7H . Ade7 TDDFT/PBE . c , N7H 270 [1]. 4.90 ( ) B3LYP/6-31+G(d) Ade7 I = 5.43 : ) . I ( ; I = 5.34 , . [12], , 232 . .1) . . Ade9 PBE [11]. PBEAde7 c 1. . c 6- 31+G(d). 1. ( ) (f) N7 H TDDFT . (PCM) 267.50 nm (f = 0.0133) 263.93 nm (f = 0.0610) 239.60 nm (f = 0.0209) 265.37 nm (f = 0.0798) 239.63 nm (f = 0.0095) 267.84 nm (f = 0.0716) 263.18 nm (f = 0.0116) 261.77 nm (f = 0.0227) 241.59 nm (f = 0.0160) 271.31 nm (f = 0.0453) 266.12 nm (f = 0.0383) 262.35 nm (f = 0.0252) 226.22 nm (f = 0.0167) 270.18 nm (f = 0.0275) 268.39 nm (f = 0.0585) 263.28 nm (f = 0.0159) 240.96 nm (f = 0.0106) PBE/6-31G PBE/6-31G(d) PBE/6-31+G PBE/6-31+G(d) PBE/6-31++G PBE/6-31++G(d) 268.77 nm (f = 0.1036) 242.46 nm (f = 0.0061) PBE/6-31++G(d,p) 269.17 nm (f = 0.1029) 242.68 nm (f = 0.0059) 263.81 nm (f = 0.1313) 249.64 nm (f = 0.0335) 265.07 nm (f = 0.1339) 249.6 nm (f = 0.0229) 268.93 nm (f = 0.1729) 252.87 nm (f = 0.0343) 274.94 nm (f = 0.0315) 270.00 nm (f = 0.1469) 253.03 nm (f = 0.0228) 269.00 nm (f = 0.1734) 252.89 nm (f = 0.0343) 275.03 nm (f = 0.0318) 270.07 nm (f = 0.1466) 253.07 nm (f = 0.0227) 275.77 nm (f = 0.0287) 270.62 nm (f = 0.1500) 253.29 nm (f = 0.0219) 5 N7H , PBE/6-31+G(d) : 275.01 (f = 0.0315), 270.00 (f = 0.1469) , , * np * 0.0219). . 253.29 ( . (f = . 5). Ade Ade 288 N7H 260 , 275 N9H . , ( , ) [1]. TDDFT/PBE/6-31+G(d) , N7H N9H , R = 3.20 3.25 Å). Ade9/Ade7, Ade7/Ade9, Ade7/Ade7 Ade9/Ade9 . 2- ( 6 7. 233 . 5. PBE/6-31+G(d) N7H Ade . Ade9/Ade7 274.3 ), (f = 0.099) (262–245 ( . . 6). 323–337 Ade7 284 ) 260, 275 288 (277–292 * np * ). , Ade9. ( , 253, 274 . Ade7/Ade9 268 (271–285 . ) Ade7/Ade7 0.152) (244–263 6. ) . Ade9/Ade9 ( 269.1 Ade9 (267 , . 7) ). 271– 277 277 , , ApA [1]. , 2 234 . , 284 . (f = 0.148) (242–256 ) 273 (f = (275-290 ) 3115 -1 , . 254.6 (f = 0.091) 337.4 nm (f=0.008); 1 1*(0.56), 1 2*(0.29) 323.8 nm (f=0.010); 2 2*(0.41), 2 1*(0.38) 292.4 nm (f=0.002); 1 1*(0.69) 287.6 nm (f=0.008); 1 3*(0.63), 2 3*(0.27) 284.5 nm (f=0.005); 2 1*(0.65) 282.3 nm (f=0.057); 1 4*(0.39), 1 2*(0.30) 280.4 nm (f=0.026); 2 2*(0.36), 1 2*(0.30) 277.1 nm (f=0.034); 1 *(0.41), 2 2 2*(0.27) 274.3 nm (f=0.099); 1 *(0.32), 2 2 4*(0.27) 273.5 nm (f=0.015); 2 *(0.64) 2 261.6 nm (f=0.021); 3 1*(0.43), 2 4*(0.28) 259.2 nm (f=0.007); 2 *(0.38), 3 2 4*(0.29) 255.8 nm (f=0.013); 3 *(0.53), 2 4 1*(0.33) 252.9 nm (f=0.019); 4 1*(0.42), 4 2*(0.36) 251.9 nm (f=0.001); 1 3*(0.68) 246.6 nm (f=0.001); 3 1*(0.61), 2 3*(0.33) 245.9 nm (f=0.001); 1 4*(0.52), 2 4*(0.42) 244.8 nm (f=0.016); 1 1*(0.69) 330.7 nm (f=0.0001); 1 1*(0.70) 314.7 nm (f=0.004); 2 2*(0.69) 288.0 nm (f=0.0008); 1 1*(0.69) 285.1 nm (f=0.015); 1 3*(0.50), 1 2*(0.37) 280.8 nm (f=0.024); 2 *(0.42), 1 2 1*(0.38) 279.9 nm (f=0.007); 1 *(0.53), 2 2 2*(0.29) 276.5 nm (f=0.014); 2 *(0.48), 1 2 4*(0.28) 275.6 nm (f=0.004); 2 *(0.63) 2 271.3 nm (f=0.032); 1 2*(0.35), 2 4*(0.33) 268.4 nm (f=0.148); 2 4*(0.40), 2 1*(0.33) 256.7 nm (f=0.056); 1 4*(0.48), 1 3*(0.26) 255.2 nm (f=0.002); 3 1*(0.45), 2 3*(0.41) 252.5 nm (f=0.010); 4 1*(0.51), 2 3*(0.34) 250.0 nm (f=0.022); 3 2*(0.54), 4 2*(0.36) 249.4 nm (f=0.004); 1 3*(0.63) 245.1 nm (f=0.001); 1 4*(0.43), 2 3*(0.39) 242.6 nm (f=0.011); 1 1*(0.68) 241.3 nm (f=0.0008); 2 4*(0.54), 1 4*(0.34) 326.4 nm (f=0.005); 1 *(0.46), 1 2 1*(0.31) 323.9 nm (f=0.006); 1 *(0.44), 2 1 1*(0.32) 289.7 nm (f=0.010); 1 *(0.64) 1 285.8 nm (f=0.0006); 2 1*(0.56), 1 2*(0.40) *(0.37), 282.5 nm (f=0.019); 1 2 2 1*(0.33) 280.0 nm (f=0.001); 1 3*(0.51), 1 2*(0.31) 278.7 nm (f=0.014); 1 4*(0.35), 2 2*(0.27) 276.7 nm (f=0.008); 2 2*(0.42), 1 4*(0.37) 275.5 nm (f=0.029); 2 2*(0.45), 2 2*(0.23) 273.1 nm (f=0.152); 2 1*(0.34), 1 2*(0.34) 262.9 nm (f=0.001); 3 1*(0.60), 4 2*(0.20) 258.1 nm (f=0.003); 3 2*(0.50), 4 1*(0.30) 255.5 nm (f=0.015); 2 3*(0.39), 4 1*(0.35) 252.6 nm (f=0.007); 2 4*(0.37), 4 2*(0.34) 250.1 nm (f=0.002); 1 3*(0.55) 247.0 nm (f=0.001); 3 1*(0.62) 245.9 nm (f=0.003); 4 1*(0.55), 1 4*(0.26) 243.9 nm (f=0.015); 1 *(0.70) 1 . 6. Ade7/Ade7. Ade9/Ade7, Ade7/Ade9 235 , Ade TDDFT/PBE/6-31+G(d) . B3LYP/6-31+G(d) N7H ab initio . ) DFTE(MP2) B3LYPR 0.28 . 3.42 3.67 Å. MP2- ab initio , MP2/6-31++G(d,p) R ( E(MP2) Ade, . , R = 3.20 3.25 Å, Ade B3LYPE N7 Ade -0.04 E = -0.5 -0.6 . . (CASPT2 CCSD (T)), . - TDDFT Ade 270 nm, 0.023), 270 nm (f = 0.147), 275 nm (f = 0.032). PBE/6-31+G(d) N7H N9 . . N7 Ade, PBE/6-31+G(d): 253 nm (f = 325.9 nm (f=0.005); 1 1*(0.51), 2 2*(0.31) 322.5 nm (f=0.001); 2 1*(0.45), 1 2*(0.39) 288.0 nm (f=0.003); 1 1*(0.67) 284.6 nm (f=0.012); 2 1*(0.61) 282.8 nm (f=0.030); 1 3*(0.36), 2 3*(0.27) 278.4 nm (f=0.017); 2 4*(0.35), 1 4*(0.33) 276.0 nm (f=0.033); 1 2*(0.43), 1 4*(0.25) 274.0 nm (f=0.010); 1 *(0.44), 2 2 2*(0.26) 271.1 nm (f=0.018); 2 *(0.60) 2 269.1 nm (f=0.124); 1 2*(0.29), 2 3*(0.28) 257.6 nm (f=0.016); 2 *(0.34), 4 2 3*(0.33) *(0.38), 255.6 nm (f=0.068); 1 4 4 1*(0.31) 248.6 nm (f=0.011); 3 *(0.43), 1 1 3*(0.35) 247.8 nm (f=0.003); 1 3*(0.51), 3 2*(0.24) 246.4 nm (f=0.027); 4 1*(0.40), 3 2*(0.36) 245.9 nm (f=0.002); 2 4*(0.45), 1 4*(0.41) 242.3 nm (f=0.002); 1 4*(0.51), 2 4*(0.30) 241.1 nm (f=0.001); 3 1*(0.56) 240.6 nm (f=0.020); 1 5*(0.66) . 7. 236 Ade9/Ade9. 1. . 1987, 584 . 2. . . ., ., ., ., – .406, ., ., ., , . . 3, .402. 3. .: , 2006, . , – . « ». . . . , . 2008, .169. 4. M. Kasha, H.R. Rawls, M.A. El-Bayomi. The exciton model in molecular spectroscopy. Pure and Appl. Chem.,1965, vol. 11, 3, p.371. 5. . . .: , 1968. 6. S. Nikitine. J. Chem. Phys., 47 (50) 613; 50 (53) 407. 7. Gaussian 03, Revision B.05, Frisch M.J., et al. Gaussian, Inc., Pittsburgh PA, 2003. 8. . , . , . . , . // . », . 14, . . , .: , 1977, .78. 9. M. Dreyfus, G. Dodin, O. Bensaude, J.E. Dubois // J. Am. Chem. Soc., 97, 1975, p.2369. 10. M. Swart, T. Wijst, C.F. Guerra, and F.M. Bickelhaupt. stacking tackled with Density Functional Theory. // J. Mol. Model. (2007) 13, pp.1245. 11. G. Olaso-Gonzalez, D. Roca-Sanjuan, L. Serrano-Andres, and M. Merchan. Toward the understanding of DNA fluorescence: The singlet excimer of cytosine. J. Chem. Phys., 125, 231102 (2006). 12. . , . , . . . .. , , 2007, 219 . 13. J.P. Perdew, K. Burke, and M. Ernzerhof. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865 (1996). 237 : : . , .- . . . , , . . , . , . . , , . , , 2. , . . , . . ( , ), . , , ( . . 1). , , ( ) . . : ( , ) H2, C, S, 238 . . 1. , . 50-100 ~ 10 . . . 4000-5000 500 ~10 He 3 -3 . 1 ( . . 2). . ~3 , , . 7 ( Ni– . ), Ar+ 3 4 ~10 -10 Å. . 2. . 239 (XPS ) ESCA-5950 (HewlettK Packard). 10-8 . (E = 284.8 eV). . 1s ~ 0.8 eV. 0.1 eV. ±5% >10 .% ; (<10 .%) ±10%. Ar+, 50–300 . . . , , ( . . 3). . 3. ( ) . ( ). . Fe0. : 3FeO (Fe0, Fe2+ Fe + Fe2O3 , Fe3+). ( 240 . . 4). (Fe3+/Fe0 = 2). Concentration (at. %) 2.5 2.0 Fe2+ Fe3+ 1.5 1.0 0.5 Fe0 0 Sample Surface 20 40 60 80 Bottom Thickness of the condensed film (%) Fe0, Fe2+ . 4. Fe3+ . . Fe3+, 1639). , « -16» ( : Fe0 : Fe2+ : Fe3+ = 1.2 : 1.9 : 0.7. Fe3+ , . , , . . , . . . , , . ( 10 -3 ). . , . . , , , 1200° . , . . 2010 . 241 1. M. V. Gerasimov and E. N. Safonova (2009) Possible composition of the early impact-generated atmosphere and its role in the origin of life. In: European Planetary Science Congress, vol. 4, EPSC2009-675. 2. M. V. Gerasimov, Yu. P. Dikov, O. I. Yakovlev (2009) The Effect of Reduction of Elements on Their Dynamics During an Impact. In: The First Arab Impact Cratering and Astrogeology Conference, Amman - Jordan, University of Jordan, p. 22. 242 ( : . ) . 2009 : 1. ~50 . 2. . 3. . , , , . 1. , . , , . , , , , , N, , - , . , , , 13- (NH4)2HPO4. . 1.06 , , W=109 50 . 0.3 . , . .-2 .-1 : , . 1.1 100 400 . . . 200-300 . . . 450 960 . . . 1000 . , .1.2, . .« », 4000 . . . , 13 . . . , N , N 9 32. 243 , . , . 10 000 , 20 000 . . ( . . ) 30-60 . , , , , . , , . . . , , « . , , » , , , O, N, , , . , , , , « ». , . , , , . , , . , 450 900 . . . , , . , , . , , , , , . . 2. , , .2.1. . , (*). , , .2.1 , , 1 5 105 ., , . , 244 . . , , . , , . , . . , . , . , , , , , . , , , , . , , , , , , - . , , . , , . , . , , , , , , . 245 3. . , , . , , , . , , , , , . , , , . , , . 5 15 , 10 , 30 , , . » « , , . . , , , 0 . . 1400 4000 . 5000 15 . , , . , « » , , . , , , , . , , , . , , , . , . , 246 , . , 40 1,06 15 , . , .3.1, . , . ~ 0,6 7 ~2 . , , ~ 20 . , . , , , . , . 3 1000 . . . . MALDI-TOF-TOF , . , , , ~ 700-800 . , , . . , 2000 , – . , , . 3.2. , , , , . , , . , . , 105-106 , , , . « » , . , , , . , , , – , « , . » . . 247 , . . 1.1. , C, H, N, O . 1.2. . 248 , « P. 1.1 » 100 13 . 600 . 2.1. . : 0,1 1 1 2 , 20 . , 50 40 , . *, . 4: *, 6 - *, - *, - - . 100 ., 3, 4, 5 3 , 5: . , . *- . 249 . 3.1. , . 2. . 6. . 1. . 3. . 4. . 5. . 7. . 3.2. . , C NH4 NO3. Ser Cys. 1100 1700 ., 250 Gly, Ala, , . : : : . . . . , , , , . . . . , . , , , . ), .( . , , . . , , . , . . , . ) , , , , ( ) . , . , , , , , . , , ) , ( - ). , ( 1). 251 Br Br N R Br P R HO(CH2)2 N R -R -OH-R Br R N (CH2)n X Br N N R DABCO-R OH O O N R O N N CH3 CH3 C O(CH2)2N+ (CH2)9 N+(CH2)2O O X=Br ( Br N R Py-R -R -R X N R Br N R Br P R Br N R Br- CH3 O ); Tos ( ) ( ), CH3 Br C O 1. : ), ( ), (Py); R – 10-18. , , , 65 - 1.0 %) 2 C 12 C 14 C 16 C 18 70 -, . 4.5 75 DS,*1010 . -1 , , C 18 C 16 C 14 C 12 4.0 3.5 C10 C14 C16 C18 , , ). 0.9 0.8 3.0 60 2.5 0.7 55 2.0 0.6 50 1.5 45 1.0 0.5 0.5 40 1E-5 1E-4 1E-3 0.01 CDABCO / . -1 0.1 0.1 1 10 100 0.4 0.00 0.01 0.02 0.03 0.04 , M . 1. 0.05 ,M ( ), ), ( ) DABCO-R ( ) -R ( DABCO . 1 -R , , ( . ), , .1 . , 1, . 1. . .1 . , , , 252 ( - ). , /OH-R -R, , . 1. . , R -R C10 C12 C14 C16 C18 /OH-R 65 11 3.8 0.95 0.34 DABCO-R 13 5.6 7.5 11 4.0 1.0 0.12 -R 6.6 1.5 0.1 0.018 2. , . , . DABCO-R -R TMA-R -1.0 -1.5 -2.0 -2.5 lg -3.0 -3.5 -4.0 -4.5 -5.0 9 10 11 12 13 14 15 16 17 18 19 nC . 3. . 2. , . . 253 . 2 . , DABCO-R , 0.9. 14. , -R , . -R .2 0.5, . 1 , -R . , -18, . 3. . , ( . 3). , . Br + N Br N+ R1 CH3 O = N N R2 CH3 = N O + + N N Br - + N . R1 2 , O N Br +N Br- +N Br - +N Br + +N Br- +N Br - , a + Br N + N + , O N R1=n-C10H2 1; R2=H; R1=R2=n-C10H21; Br N BrN + + N - Br - Br- Br- + - + + BrN + Br BrN N Br N + Br N + N , + » . 4. N Br N + + N N Br N + Br + Br N+ N +Br N Br + + N Br N + Br + b 2 . 8.0 : , pH 6.0 . 4.0 ( . . 4 4). 2.0 , , . 0.0 -5 . 1x10 -4 1x10 -3 1x10 , . . 4. . 254 -2 1x10 CAPT / M , . , . , - , - - DABCO-R , ( , . 5). . , , , , ( . 5 ). O N S H OH H -R N O Br P R N -R O N Br P R Br N R O -R HO N O N O N N+ N+ BrR O O N S N + R N Br- N BrC16H33 O N Br R R N SO 3 N R R' N R R N R' O _ SO3 R _ Br R O O N N R R' N N O O R' O N N O R R ) ) . 5. ( ) ( ), . 255 , 10.0 Phe, Leu, Phe, 4-16 . Tyr, Tyr, 0.4 -14 0.2 , ,CS, ppm pKa 9.5 , 0.0 0 2 4 6 8 10 , 12 pH -0.2 9.0 , -0.4 , . 0.000 0.005 , -0.6 0.010 C, M , . 6 . (Leu) (Phe) 16-4-16. . 6 . , (Tyr) -14. . , , . . , . . ( . 6, ) ( , 16-4-16) . ( .6 . 5). 1 , . , . , -14 . 6 , . L. , , , , , . . 256 12 -1 120 1 2 80 : 9 -1 40 -1 6 60 2 103 kobs / /M 3 3 0 0.000 0.003 0.006 0.009 10 kobs / 103 kobs / 90 10 kobs / -1 120 2 3 30 40 30 1 1 0 0.000 0.001 0.002 0.003 C 0.001 0.002 0.003 TAT /M 0 0.0000 0.0002 0.0004 0.0006 0.0008 C /M 0.004 C /M . 2 . 7 10 1 0 0.000 1 (alkyl=Ethyl) (alkyl=Hexyl). 2 20 -R 7 . 1 (1) 2 (2) . -R, . – . . 7 . 1 (1) 2 (2) . – , . – , ( . 5). , ( ) . : 2009 . R – : - 4 , O(CH2CH2O)mCH2CH2OH nKOm, 3. ( n– R, m – 3) . , , : (5-10 , ), , « » , 100 ( . 8). , 257 , ( . 8. 9 . 9). 9 , . 9. . , nKOm/La(III) . .). O HO P O HO O O P OH OH O O C5H11 11 -1 , 4 . 8P(O)Cl3 HO O OH OH O O O O 4 BuOP(NEt2) 2 . 4 6 76 NEt2 O P OBu HO . S NEt2 O P OBu HO C5H11 O 4 O C5H11 . O O P O [S] O 4 XP(O)Cl2 5 147 X P O HO HO O X P H3C C5H11 25 10 .(i), 19 C O [4] , , O O 4 C5H11 .(k) c- . S NEt2 O P OBu O O O . 4 7 76 (CH3CO)2O X OH HO O - O C5H11 4 C5H11 4 147 . O X = CH 3(i); ClCH 2(k) O O [S] , S NEt2 O P OBu C5H11 C5H11 3 8 XP(O)Cl2 OBu O OH O C5H11 C5H11 S Et2N P BuO O 8 BuOP(NEt2) 2 O O O HO O P HO HO HO NEt2 Et2N P O BuO 26 9 .(i), 20 O 4 C5H11 4 8 75 .(k) . [4] . [4] 1:8 4 – 3 1:4 - 4, 5. 5, 6, 7. 7 : 258 8. , , . [4] [4] ( ), , , . ( ) , [4] , , . , . , , . 10. [4] , (II) , ; ( ), , , – 0.05 0.095·10-6 , ( , . 10). , ( ). , , , . . . . . : 1. XVII (RCCT 2009), 29 3 2009 ., A.I. Konovalov, I.S. Antipin. Supramolecular systems – the bridge between nonliving and living matter // XVII International Conference on Chemical Thermodynamics in Russia Kazan, Russian Federation, june 29 –july3, 2009. Absracts. Vol. 1. – P.13. L.Ya. Zakharova. The regularities of the self-organization in aqueous systems based on surfactants, amphiphylic cyclophanes and polymers // XVII International Conference on Chemical Thermodynamics in Russia Kazan, Russian Federation, june 29 –july3, 2009. Absracts. Vol. 1. – P.130. 2. – . – 2009, 25-30 . . . « – », . 26. 3. V th International Symposium “Design and Synthesis of Supramolecular Architectures”12-16 2009 ., . L.Zakharova. "Self-organization of amphiphilic compounds as a basis of the evolution of supramolecular systems" (O-11). 259 1. L.Ya.Zakharova, V.V.Syakaev, M.A.Voronin, F.G.Valeeva, A.R.Ibragimova, Y.R.Ablakova, E.Kh. Kazakova, Sh.K.Latypov, A.I.Konovalov / The NMR and spectrophotometry study of the supramolecular catalytic system based on polyethyleneimine and amphiphilic sulfonatomethylated calix[4]resorcinarene // J. Phys. Chem. C. – 2009. - V. 113. – N 15 – P. 6182-6190. 2. N.B.Melnikova, E.Kh.Kazakova, I.V.Gulyaev, A.A.Volkov, M.S.Gusichina, L.Ya.Zakharova, M.A.Voronin, N.A.Makarova and A.I.Konovalov / Monolayers and LengmuirBlodgett films (layers) of amphiphilic tetramethylsulfonatocalix[4]resorcinarene and their interactions with polyethyleneimine and ceruloplasmin // Supramolecular Chem. – 2009. - V. 21 - N 6 - P. 532-538. 3. , , , , , , , , , , / [4] // . . . .– 2009 - 1 - . 138-144. 4. Lucia Zakharova, Victor Syakaev, Mikhail Voronin, Vyacheslav Semenov, Farida Valeeva, Alsu Ibragimova, Azat Bilalov, Rashit Giniyatullin, Shamil Latypov, Vladimir Reznik, Alexander Konovalov / New self-asembling systems based on bola-type pyrimidinic surfactants. J. Colloid Interface Sci. doi:10.1016/j.jcis.2009.10.006. 5. Lucia Ya. Zakharova, Vyacheslav E. Semenov, Mikhail A. Voronin, Farida G. Valeeva, Rashid Kh. Giniatullin, Victor V. Syakaev, Shamil K. Latypov, Vladimir S. Reznik, Alexander I. Konovalov / Supramolecular catalytic systems based on bolaform pyrimidinic surfactants. The counterion effect. (Accepted for publication; Mendeleev Communications). 6. , , , , / 4- -1-1[2.2.2] .( , ). 7. Yuliana R. Kudryashova, Natalia M. Selivanova, Mikhail A. Voronin, Alsu R. Ibragimova, Svetlana E. Solovieva, Lucia Ya. Zakharova, Yuri G. Galyametdinov, Igor S. Antipin, Alexander I. Konovalov / Amphiphilic Oxyethylated Calix[4]arene: New Building Blocks for Design of Nanoaggregates and Liquid Crystalline Mesophase. (Submitted to Langmuir). 8. , , , / [4] .( ). 4 1. XVI », 2009 . « : , , 29 , , , – / . - . 51. 2. Vth International Symposium “Design and Synthesis of Supramolecular Architectures”, October 12-16, 2009, Kazan, Russia. 260 Yu.R.Ablakova, G.I.Vagapova, G.A.Gaynanova, V.V.Syakaev, L.Ya.Zakharova, I.V.Galkina, A.I.Konovalov / Self-organization and catalytic activity of the systems based on amphiphylic phosphonium salts - P. 137 (YP-45). 3. V-th International Symposium “Supramolecular Systems in Chemistry and Biology”, May 12-16, 2009, Kyiv. Ukraine. T.N.Pashirova, G.A.Gainanova, E.P.Zhil’tsova, A.R.Kayupov, E.M.Kasymova, A.R.Burilov, L.Ya.Zakharova, A.I.Konovalov / Novel polyethers based on the calixarene platform. The synthesis and properties. – P. 103 (P-22). 4. V-th International Symposium “Supramolecular Systems in Chemistry and Biology”, May 12-16, 2009, Kyiv. Ukraine. Gulnara G. Gaynanova, Lucia Ya. Zakharova, Irina V. Galkina, Alexander I. Konovalov / Supramolecular systems based on amphiphilic phosphonium salts with sterically hindered head groups. - P. 104 (P-23). 261 : : . , . . , . , . , . , . . 2009 . : 1) ( , ) 2) ( ). 2009 . , , ( ) . 2009 , 26 ,9 . 1. (Fedonkin M.A. Eukaryotization of the Early biosphere: a biogeochemical aspect // Geochemistry International, 2009, Vol. 47, No. 13, pp. 1265–1333) 10 . , , , . . . , . , , . . , (Fe, Ni, Co, V, W, Cu, Mo .), . . , . , , , . 262 ( , , ), (CH4, NH3, H2S , , H2O) , – . , . ( ( , , Fe, W, Ni) , Mo, Cu, Zn). , . , , , , . (750-540 . ) , , . ? 200 « . » , 2. ( . ). , ( . – . 2009. 91 // .). , ., , , . 555 . . . " , Horodyskia "; Yochelson and Fedonkin 2000 Horodyskia williamsii. 1465 . 1070 , . , , ; . . , . , , Precambrian . . Research ). ( 4- ). , - Glomulus filamentum Steiner, 1994; Eoholinia fruticulosa A. Istchenko, 1989; Tyrasotaenia podolica Gnilovskaya, 1971; and Kanilovia sp. 263 ( ) ( . , . . , . ). Kimberella Parvancorina ( Kimberella ( ), , , ). , . , - , . , , « , « 1500 quadrata, » » , . ( ). Parvancorina . , P. minchami . . , P. sagitta . , . Primicaris). ( . (Scania, ). . . . , ( ), . « », » ( ), « » ( - , « ) ». Metazoa :" " " , , ". . , . , , " " , ( ) - . " ", , , ( . ) . ( 264 . ). : ; ; ; ; . , , . ( . ). , , . . .( . . ). , . , , . ( . ). . Gaojiashania ( ) . . ( , . Geological Magazine). 05.02-26.02.2009. 4), . ( . . . (Fayek Kattan, ( , ), . )) . . , . Metazoa (Jibalah) (Dayka) . 05-15.07.2009. , . , Metazoa . ), 28.07– 06.09.2009. 30 Metazoa ( . ). . , , , . Metazoa « . . » ( ), ( , « »), 265 « . , . 05.08 - 05.09.2009. . ). , . » . ( ), . ( , , , . sorichevae Sok., 1965, . - - Beltanelloides 44 . , , 2008) ( . 21.10-12.11.2009. ( . ( , , )). . Metazoa ( . . ). Ernietta Pflug, . 1. Fedonkin M.A. Eukaryotization of the Early biosphere: a biogeochemical aspect // Geochemistry International, 2009, Vol. 47, No. 13, pp. 1265–1333. 2. Fedonkin M.A. Physical aspects of early life evolution // What Is Evolution. Bicentennial of Charles Darwin's Birth. Oct. 15-18, 2009. Kyoto University. Abstracts. 3. Fedonkin M. Hydrogen and Metal Catalysts in the Initiation and Early Evolution of Life. In: Origins of Life and Evolution of Biospheres, Special Issue: Abstracts from the 2008 ISSOL Meeting, 2009, 39:179–392. P. 311-312. 4. Fedonkin M., Ivantsov A., Leonov M., Lipps J., Serezhnikova E. Malyutin E.I., Khan Y.V. Paleo-piracy endangers Vendian (Ediacaran) fossils in the White Sea - Arkhangelsk region of Russia // In: Lipps J.H. & Granier B.R.C. (eds.), PaleoParks - The protection and conservation of fossil sites worldwide.- Carnets de Géologie / Notebooks on Geology, Brest, Book 2009/03, Chapter 09. 2009. 5. Grey K., Yochelson E.L., Fedonkin M.A., Martin D.McB. Horodyskia williamsii new species, a Mesoproterozoic macrofossil from Western Australia // Precambrian Research, (in press). 6. Leonov M.V., Fedonkin M.A., Vickers-Rich P., Ivantsov A.Yu., Trusler P., Hoffmann K.H. Discovery of the first macroscopic carbonaceous algal assemblage in the Terminal Proterozoic of Namibia, southwest Africa // Communs geol. Surv. Namibia, 14 (2009), pp. 1-7. 7. . . . . . . . .: . ). 8. ., . . . . . . . .: . ( ). 9. ., . – // . 2009. 91 . 10. . .) . . , . . . 2009, 580 . 11. . . . . . 17, 6. 2009. 12. . . 200. .: 266 . 13. . 14. . .. . 3. . 80-96. 2009, . . 2009. . 3-8. . . . 15. (LXXV ) . 28-42, . 16. 17. 18. . (1856-1910). .: . . 2009, . 133-150. . .: . . . 2008. 95 . . 17. . . , 2009. . 155-157. . LV // . 2. . 3-6. // LV // . -2009. . , 26–27 2009 . . . ( .). .: . . , 2009. C. 24-25. 19. P. Vickers-Rich, F. Kattan, P. Johnson, M. Leonov, U. Linnemann, M. Hofmann, A. Ivantsov, W. Kozdroj, S.M. Al Garni, A. Al Qubsani, A. Shamari, A. Al Barakati, M.H. Al Kaff, T. Rich, M. Kozdroj, P. Trusler, B. Rich In Search of the Kingdom’s Ediacarans: Expeditions Exploring the Neoproterozoic Jibalah Group and Related Sequences on the Arabian Shield – 1429-1430 A.H., 2008 to 2009 A.D., 2009, 37 p. 20. . Metazoa // ( XLIX ). . . . 2009. . 1819. 21. ., . Parvancorina Glaessner // , 2009, 1. . 14-19. 22. . – // , 2009, 6. . 3-12. 23. Zhuravlev A.Yu., Gamez Vintaned J.A., Ivantsov A.Yu. First finds of problematic Ediacaran fossil Gaojiashania in Siberia and its origin // Geol. Mag. 146(5). 2009. S. 775-780. 24. . : , // : , , . , 250. . . . . 2009. . 96-99. 25. . – Metazoa // « » « : . ». . . 2009. . 155-157. 26. . Radiata – // 200 1809-2009. . . 2009. . 47. 27. . – // -2009, . . . 2009. .17-18. 267 28. ., ., ., ., . // . 2009 . (6-10 LV ). , 2009. .122- 124. 29. ., ., "200 ., 30. ., ., - // ". .116. 2009. ., ., . . , ., , // . 40). ( . . 68-70. 31. Ragozina A.L., Dorjnamjaa D., Krayushkin A.V., Serezhnikova E.A. The Neoproterozoic Dzabkhan Biota: Algae, Microfossils, Trace Fossils and Problematical Remains from Western Mongolia // International conference on the Cambrian explosion. Abstract Volume. M. Smith, L. O’Brien, J.-B. Caron, Eds. ICCE, Aug 3-8th 2009, Banff, Alberta, Canada. P. 84. 32. . : // . . ( ). 15 . 33. . // « »( ). 23 . 34. Serezhnikova E.A. Microbial binding as a probable cause of taphonomic variability of Vendian fossils: carbonate casting? // Advances in Geobiology of Stromatolite Formation Proceedings of the Kalkowsky Symposium held in Göttingen 2008 Reitner, Joachim, Queric, Nadia-Valerie & Arp, Gernot (eds.) Springer-Verlag (in press). 15 p. 35. . : // . . : . . . 2009. . 191- 193. 36. . // : , , . . . : , . 250. 2009. . 218- 221. 37. Serezhnikova E.A. Attachment adaptations of Vendian sedentary organisms // International conference on the Cambrian explosion. Abstract Volume. M. Smith, L. O’Brien, J.B. Caron, Eds. Banff, Alberta, Canada. 2009. P. 53-54. 18 ,3– 268 . , 15 , : : . , . , . . . , , . , . , . , . 2009 . . I. . , . 2009 . , . I, . , , – . . , , ( ) , . . . 2009 . , . ( 50 ) . , . 2009 . , , . Zeiss Axio Imager A1 AxioCam MRc 5. - , , , . 269 , . . . , . 13 II. . . , , , -10‰, 13 2.06 1.25 . ( Mn/Sr < 6, Fe/Sr < 15, . (0±1‰) , , 18 Mn/Sr < 4, Fe/Sr < 10, 18 > > -10‰), , , , , 1.60 . 13 . +4.5‰, , . III. - . , , . Palaeolyngbya, (Siphonophycus, Eomicrocoleus Oscillatoriopsis, Gloeodiniopsis, ), Archaeoellipsoides Filiconstrictosus, Orculiphycus, Partitiofilum – , . Eosynechococcus, Satka favosa, Kildinella hyperboreica, Leiosphaeridia crassa, Nucellosphaeridium minitum, Protosphaeridium densum, Eomarginata striata, Germinosphaera, Palaeoanacystis vulgaris, Germinosphaera, Nucellosphaeridium, Coniunctiophycus, Caudosphaera, Plicatidium, Ulophyton Majaphyton. Satka favosa, Leiosphaeridia crassa, Pterospermopsimorpha, Eomarginata , , Satka favosa . . IV. . 2009 , , 270 . , (720-570 . , ), . , , , . , , . , , , , , , . . , . 3-D . , . V. . 2009 . , , . , : . , , , , . , ( ) , . , . . 540 VI. . (720 ) . 720 ~540 271 . , . , 720 – 670 . ) , . (<660–>635 . ), , , , , , , , , ( (~540 580 , ) . . . . ), , . , , ( , ), . . . , , , , , 2 . ( , ). . , , . - , , . , , , . , , . , , , . , , , . , 800 . . , , , , . , , 13 272 . VII. , , . , ( ) , : . , , , , , - . 2009 . Rb-Sr (0.3-0.6 ) , . , 1Md-1M, (1.2 , ) Rb-Sr 0.6-1 ) , 2 1, (0.2-0.3, 0.1-0.2 < 0.1 1Md , Rb/Sr. 87 Sr/ Sr = 0.7085 ( U-Pb (SHRIMP) Rb-Sr , , , ( , . ( , , VIII. 0.3-0.6 559 . 86 . ) ( ) ) , ) . . . Rb-Sr K-Ar , in situ , MgCO3. , . (90%), Al2:1 (6%) (4%) . , . Mg . . 1 , 180° ( (~77%), , 2 ). 60°, - , , , . (4%) Rb-Sr K-Ar . 273 IX. . , – . , , , . TES Scan MV-2300 Cambrige Instruments INCA-200 . , , , ( 6 10-15 ). , (0.1-0.2 ) , , . . CaCO3, CaCO3 Cl F, , Zr Nd. Na, K, Al Cl, Na, K, Al , . Mg, . . , , , . X. . , – -, . , , . , , , . , , , . – . . , 274 . , , . . , , – , . , , . , , , . 275 : : . , . . , , . . , , . . . , . , , (~2 , . ). 0.4-0.8 1.5-2.0 . , 4-6 . , ( 2 . ). , 0.4-0.8 1.5-2.0 (0.25-0.5 ) ( . 1). . , , 4-6 ( . ) 6 , 2000 , , - . , , . , , , , 276 . , . . 1. ( ( ; , , 1963; 110 43, 44, 45, 79, 75, 133 – ( 1976; , , 1978). , 2001), ), - 185 – (14 ). , , 1960; , , , ( , ( , , ( 2007, 2008; , , , 1974) , 2006; , . , , 2009) . , , : Actinocyclus octonarius Ehr. (Ehr.)Ehr. ( . 2) Actinocyclus , Actinoptychus senarius octonarius , . Actinoptychus senarius . . , , , Actinocyclus octonarius , . . ( . . 2). 165 277 ( 2000 1-3 ) 6 , . , . , , Actinocyclus octonarius. Chaetoceros , , . . 2. , K-86 ( :1– ) ,2– . 1( ) Actinocyclus octonarius ( ). , . 2). , . Thalassiosira parva Chaetoceros 2 , Chaetoceros. – ( , , 1982; , 1987; Sancetta, 1981, 1982; Koç Karpuz, Schrader, 1990; , 1997,; Stabell, Koc , 1996;Crosta et al., 1997; Booth et al., 2002). , 2– , Thalassiosira parva Chaetoceros. , . 3 5 Actinoptychus senarius. (3 , 3 , 5 , 5 ), , . , 3 ( . 2). 5 Actinoptychus senarius Actinocyclus octonarius ( . 2, 5 ), 278 – (5 ). ( . 2). Chaetoceros, 2) 4 6( . , (1-3 ) . , . 2)., . - , , . , , ( ). , , . , , ( .3). , , . , ( , 2006 ). ( . , ), - , , , . , , ), . IX - VII . . . , . , , ( ) . ( ), IX - VII . . . . , 279 . . 3. . . , . , , . , . ( , , , , ), . , , . ( , , 4). , . , 280 ( ., Lagurus, Eolagurus, Bison, Equus) , ), . , ( ., Mammuthus, Coelodonta). . ., Clethrionomys, Elephas (Palaeoloxodon)), , , . ( ., 2002). , . 4. . . ( , 2-3 . 5) . 281 , , . , . , . , , . – . , , ( ), . . 5. . Elephas (Palaeoloxodon) antiquus: 1-2 3 -5, ; 3-4 , . -9, , 3 282 , 1 – 3, 3 – , ;5– M3, . t ; 5-7 – ;6– , ; 2 – ;4– . 28689, ;7– , - , . – . , , . - , ~200 . 40-50 ( ( , 30-40 180 ), , 1988). 60-70 . : , 120-130 . , , ( ( : , 1978). ., 1977). , , , , . , , , . . , , , , . , , . , , , Pinus s/g Diploxylon (41-46 %) P. s/g Haploxylon ( 10-15 %), 22%, 5%, , , . (Ranunculaceae, Saxifragaceae, Caryophyllaceae ), . ( ) , 42 63%. – Gleicheniaceae, Aequitriradites, Pelletieria, Anemia sp., Coniopteris sp., C. jurassica, Cicatricosisporites sp., Cyathidites, Klukisporites sp., Lygodium sp. Pilosisporites sp., Schizaea sp. …, 2003) , , , – . Trudopollis sp., Orbicul pollis globosus, Extratriporopollenites sp., Aquilapollenites 283 sp., Triporopollenites sp. , ( . -14-13 89% ). ( . ) , , : - , . . - - – , . , . 9-8 . , . . , , . . . , . 1. ., . // : . 2009 ., . 2. . . ., . 100- ). ., , . . (8–11 , 2009. . 153-156. : . ., . // . 820-823. 3. ., ., ., ., , 2009, ., . 428, ., ., / : : 284 , 19–23 ., . : . 6, . 6 2009 .). . . : . . , 2009. . 581-582. 4. . // . 5. . ., / . 10. . , 2009. . 472-475. : : . : . 6 . . . ( . , 19–23 2009 .). : , 2009. . 581-582. 6. Baigusheva V., Titov V. Large deer from the Villafranchian of Eastern Europe (Sea of Azov Region): evolution and paleoecology / The Quaternary of southern Spain: a bridge between Africa and the Alpine domain. Abstr. of 2009 annual meeting SEQS (Orce and Lucena, Spain, Sept. 28 - Oct. 3, 2009). Orce, 2009. P. 41-43. 7. Sotnikova M., Titov V. Carnivora of the Tamanian faunal unit (the Azov Sea area) // Quaternary International. Vol. 201. 2009. P. 43–52. 8. Velichko A.A., Catto N.R., Kononov M.Y, Morozova T.D., Novenko E.Yu., Panin P.G., Ryskov G.Ya., Semenov V.V., Timireva S.N., Titov V.V. and Tesakov A.S. Progressively cooler, drier interglacials in southern Russia through the Quaternary: Evidence from the Sea of Azov region // Quaternary International. 2009. V. 198, Is. 1-2. P. 204-219. 285 CC , , : : . . , , . . . . , , . , . , . , . . , . ( , , 1975; Kornberg, 1995). ( , , 2006; 2008), , . 2009 , , . , , , (Helfenbein et. al., 2003). , , , c , ATP22, Saccharomyces cerevisiae ( 1). 2.5 . 1 3. 1 2. . 1. S. cerevisiae ) ( D273, Pi PP1 286 170 10.6 36.6 3.7 E232, 95.4 12.2 170 26.5 144 16.9 31.8 2.98 159 19.9 64.7 8.9 PP2 PP3 PP4 PP5 6.36 13.8 1.43 3.66 0.53 3.18 0.21 0.26 37.1 63.6 4.98 4.93 61.8 6.8 5.6 7.42 1.59 1.06 4.975 0.99 11.4 0.99 1.12 0.149 2.09 0.34 12.9 22.4 2.69 3.93 281 26.5 51.4 4.48 107 12 , 4.9 2.4 0.3 0.4 ATP22, petite, . , , , . , , , , . , , , , , . (Swiss Prot:http://kr.expasy.org/enzyme; http://www.brenda-enzymes.info/) : . n + H2O , , , , . . , , . ( , 2005). , , , , Ppx1 , . Ppn1 ( 3.6.1.11), Pi . CNX Saccharomyces cerevisiae PPX1 , ). 208. . 1), ( . ( ~ 208 ~ 10 PPN1, . 4 Pi . 2, 1-7). 5 ( 208 . 2), . . ( . 2), 208 15 . , 0,05 10 10 208 , ~ 0,4 S. cerevisiae 1 . PPX1 PPN1 , i, . . 75, 45, Pi 25, 15 (10 ) 90 287 ( ), ~ 10 ( 25 . . 2, 8-15). 208 , 15 . , . . 1 30 20 10 0 0 4 8 . 1. S. cerevisiae 208 12 16 20 ( ) CNX Pi ( ) 24 , 10 . 2. . . 208 3 – 10 0 288 , 4 – 30 45, 0 ; 15 – ; 11 – 15, 90 , 5 – 60 45, 90 10 . 1-7 : 1–0 ,2–5 , , 6 – 4 , 7 – 24 . 8-15 – : 8 – ; 9 – ; 10 – 75, 0 75, 90 ; 12 – ; 13 – ; 14 – 25, 0 25, 90 15, . (2006) . . . : . , 2006. . (2008) . URSS . ., . « , 2008 . 33-57 » . ., : , ., : . , 1975. . , ., . . (2006) ., : , 2005. , 71, 1198-1201. . (2008) , 73, ., ., 1224-1229. Kornberg A. Inorganic polyphosphate: toward making a forgotten polymer unforgettable // J. Bacteriol. 1995. V. 177. P. 491-496. Helfenbein K., Ellis T., Dieckmann C., Tzagoloff A. ATP22, a nuclear gene required for expression of the F0 sector of mitochondrial ATPase in Saccharomyces cerevisiae. J. Biol. Chem. 2003. V. 278. P. 19751-19756. , 2009 . 1. Ryazanova Lubov P; Suzina Natalia E; Kulakovskaya Tatiana V; Kulaev Igor S Phosphate accumulation of Acetobacter xylinum. Archives of microbiology 2009;191(5):467-71. 2. . . , . . , . . SACCHAROMYCES CEREVISIAE PPX1 PPN1 . 2009, . 78 3 .342-346. 3. . , . , . , . Saccharomyces cerevisiae. . 2009 . 74. . 8 . 1037-1041 4. . . , , . . , . . SACCHAROMYCES CEREVISIAE . 2010 . 79. 1. 1-4. . 289 : .- . . . , , , ,« », . . 563 90 ). ( 11.4 . 3 2 . , , 1400 63.9 , 22 , ) ( , 146.8 , 2 241 , 6.5 . 2.5 , 728 . (pH 11) . , , , – , .C . 80- 90- , ( . . . TAWANI-2008, . ), 2008 . . I. , . 1). ( ) , . , , , . - , – 15 1.0 , . . 290 ( ) 0.5 2.0 . . 80 . ( ) . , . . 1. [ Schwab, 1998, modified]. . , , : 15-20 3.5 ( 15 , 2.5 – . . . , , ) . , , ( . ( ). ) (moats) , . « », . . 15 . 5 , 291 . . 2008 . . , , 20 . , /c . ( ) ( -50° ). , . , : . , . , , , . : , , . : . . , , . , . , . , 500 – . , – . . , . . . , , , , . , , , . , . », ( . . 1). . . , : , ( ) ), ( . 105 , . 1). . , , ( 500 146 ). , . , , . , 15. 292 , (Eh +350-380 Na+ (pH 9.8-12.1). 20-30 ) , , ( 150 % 3 , 50 ) (0.11-1.06 70 ). +1° , ( ), SO42-. 4° . 72 . ), pH , Eh -50/-100 , , . . , , Na, K 21800 ). – 0.15 30 ( , – . 99 , . , , – 13-15 . , . . 30 Leptolyngbya, ( ) Phormidium , Oscillatoria. , 100 , . , , , - . . , , . . , , , , , , . . . II. USA), (IRIS Intrepid Duo (Thermo Elemental, USA) ((Solaar MQZ, (Thermo Elemental, ). Dowex AG 50W-X8 ( ), , Y Sc 5 (Eu, Ho, La, Lu, Y, Yb, Sc) 50 ng 293 g-1 (Er, Gd, Sm). -IV, 1 ng , g-1 Au Pd. -1, MSAN, GM, TB. , . . IQ+, , 0.100 . CaO Fe2O3 SiO2, Al2O3, 7-8 . %. . . ). ( . 3 . ( N. ). -3 0.002 ( 0.002-0.010 ) . . III. 1. . ( ( 92% ) - , ) ( 15%). . . , , , ( ). ( ). . 2. . . , : 1) « 2) » , . , , , . . ( ). . , . . , . 294 , , , , , , . , , . . , , , . ( ) , . , , , , , (5–8% C , . (12–19%). 85% ), , , . . – 0.97 – 0.92) , , , (r = , . , , (r = 0.96 – 0.97) , . , , . – , – , , . , , . , , , . 5; 4; 3, (Al2O3/Fe2O3 ). – Na2O , K2O ( , . 2) . , . 295 . 2. (HM) , . , , , . – . , ( , ) . . , , ( ) . IV. , , . , ), ( ( , ), . , 296 , , 4 . , . ( ( , ), ( , , ), , . . , ). : . , . , . , I. . . . .: « , « . ) // , 2009. . 78-82. » , . , . , . , . XVIII . , . ( , . , , . . )». 297 : : , . . , . . , . , . . , . . , . , , . . , . , , . . , , - , , . , ( ) , , , : . 2009 . . 1) , , , , . 2) - , , . 3) ( 1, 2, .) . : , ( , ). 4) , . , , . 1 2009 , . . ( . 298 , ) , . ( ), , , , . . ( .), , ( , , , ). , . : ( , , ) ). ). ( ( . , . . , , . 1soetaceae uromia ) . . . ( , )), ( .). ( ( . , , ), ), « ) , », , . , , . ( ) ( . , , . ) 2. ( ), 8.8%, 2.5 3.1 . , , 299 . . , ( , ( ) ). , , , , , , . , . ( , , . .), , Chondrites, , , , , » , , , . ,S , , , . , , , , , , . 8- (6-12 , 2009, , . «Multivariable expression of OAE2 in sedimentary ), record of northeastern Peri-Tethys», , 2, . , , . , , . , , . , «. . ( ). 3 , , . , . . 300 . , 2008 , 18. . . 2009 . 15-1. (Climate Leaf Analyses Multivariate Program), . , . . . ( ), , ( ) , . ( ), , , . . , , , . ( 0.5 0.5 ), . ; 30° , . . , . 80° . , , 82° , 6.3°±2.2° . 70 . . 14.5°±3.1° . - 2.0±3.9° ( ). 86 . , , , . , . , , , , ( ) , , . , . - . , , , « » , , . 4 . , . , , , , 301 . , , . , , , ( , ) . . . ( ) - . . ( ), - . , - . 5 . . , « ». - , ( ) 2 ( ). (10-20), , 1 , 5. Xitus, Novixitus, Schaafella (Acaeniotyle, Triactoma) (Petasiforma) . Pseudodyctyomitra pseudomacrocephala, , , ( , 2001). ryptocanium tuberculatum Dimitrica , . , (Schaafella tochilinae, S. dewiveri), , , , . ,« . 6 . , , . , 302 , ), . , , . « », . , . , ) « , « ( » ). , , », , . 7 , , , , 90- . . , , ( ), , « , ». . « », , . . , . , ( ), , , . ( ) , , . : , , , . , . , . , , , , , . , . 303 8 , , 2004 . : 1) . , 2) , , . zolla. 1.0-1.6‰. 5.5‰. , , . 18) . . . . . , . , , . , . , , . . , , . . . , ). , . , . , . , . , , , . , . 304 . . , , , . , . , , . , . , , { , . . « » « ). » . 13 . , . , 2009 . . . . 7 16 . . 305 : , , , : : . . , , , . . , . . . , . . , . , , , . , , . . . . , . . , , . , . , . , , . , . , . ( , ) . - , , », : , , , ( , , – .). , ) , ( ) . . – , , , – . 2009 . , , » « , : 1. . , , , , , - , , . , ( 306 – , ), , – – , – , , . , , , . , . , – (Batyrbaian Stage) , . . (Aisha-Bibian ,9 . Stage). 10 ( ) – , . , . 2-3. , . . , . 2.1. . . , . . , – ( ). . , , , , , , . , ( ). , ( ), , , — , , . , , . . – . 307 , – . , , , . , . . , ) , (LREE), – Batyrbay Impact Event (BIE) . ( , ) . 2.2. . 2009 . ( , , ). : , , . , , . . , , , , . . – , , , , , ¹³ = - 21,4 ‰, , ( – , ?) . 200 . . ¹³ . = 5,9‰. , . (Chlorobiacea ?). 308 , , , , . , , , , , , . - . , , , , , , . , - – , , . , , , . , , – , , , , - , . 2.3. , , , , . , . , . , . , , , , , . , , . , , . . , . . , . , « « » » . 309 , »— « » , . « « , » ». , . 3.1. XIX , – – . , , . ( ), . 45-55 . ( ) . , . , . , , . , . – . , , . , , , . , – . , . , . 6-8 , 18-20 . ) . . 70- . . , ) . . – 310 . 69 (44 – ). , . , , , , , . , . , . 3.2. . , ( , ) , « » . . ( ) . , , . , - . , – 40 60-65 35- , 70-75 40 . . ). ( , . , , , , . ( ). , . – - ), – . — , , (4-5 ), , ( 6-7 ). , . , , , . , , , , . 311 , – , . . - , . , , . , ( ). - . . . - 60-80 % . , . . , 60 300 . . . , , , , . , , , . , , 312 40 0 2009 . . . : . . . 15 , , , , ( ) . , , , , , , - , , - - , , , , , , ( , , ). - ( , ), . , C/N ( 25 - 31) . 2009 . , , , 13 - 25" ", . , , , . , , , 15% (10- ). . , , . – , 313 ( …, 2008 .). , . , , , . , , . . , , , . . , – – , – ; , , , , – , , , ; , , , ). , , , 2009 . ( . , , , ), 2008-2009 , . . – ( , ), . . , . 2009 . , ; , ; ; . ( , , ). , , . . 314 13 , /N - 13 C/N , ( 25 – 31) . , , , , , 15 (>80%) 62%. , 95% – , , . , . , 70-28% 52-100%, , . 100-81% 13 . , 13 , /N 2009 . , , . 2009 . , 25- , « », , , , , , , , , , , , , , . , , . . 2009 . . (210·10 (370·1012 12 ) ) . , 27·1012 – . . , 40-90% , , . . , , . . . (5-15%) . (96·1012 ). ( ) , . , , , . . 315 , (25·1012 , ). . , , , , 14·1012 , . . , ( ). 8-12·10 12 , . . 2009 . . , . , . ( 200) , . 320·106 , 2 ), (1.5-1016) – (2·1019) 3 – 100-900 ; 2 , 40·106 – ( . – (1.5 – 2.0)·1016 15% 3 . . . ( ) , . , , , 4% . , 21-26%. , , , . , , , (10-15% ). . , , . , , , , ( . 316 ) . , : : . , . . , . . . , , . , . , . . 1. 18 . , , », , « . « » , , . . 15 : (1) . : « » ( ), . (2) , . (3) , , . (4) . , ( ) ( ) , : . 2009 . 15 (25- »). ( « ) 317 , 2- . 2. : . 570 . 23 3 2008 . . , , . 1. CTD 10 600 . . . 1. 25- « » . 200 , , – 100. , , 0,1 37/50 180 ), 2 . Universite Paris-Sud ( . 30 , 90 . 3. , , ( 318 ). 84 40 . ( ) +2° 200 . . ( 3 ). : ( ), . ( , 3° : +3° 0° ) , . 4. , ( . 2). , . 38 -58 NAPF 36 34 APF 32 30 -58.5 28 SAPF 26 24 -59 22 20 18 -59.5 16 14 12 -63.5 -63 . 2. -62.5 -62 -61.5 -61 -60.5 -60 ( -59.5 2 -59 ) . ( . 3). 319 2 . 9000 -58 8500 8000 7500 7000 -58.5 6500 6000 5500 5000 -59 4500 4000 3500 3000 -59.5 2500 2000 0 -63.5 -63 -62.5 -62 -61.5 -61 -60.5 -60 -59.5 . 3. 2 ( . -59 ) . ( 2 . 4-6) : , , , . Diatomea 2 . 7000 -58 6500 6000 5500 5000 -58.5 4500 4000 3500 3000 -59 2500 2000 1500 1000 -59.5 500 0 -63.5 -63 . 4. 320 -62.5 -62 -61.5 -61 -60.5 -60 ( 2 ) -59.5 . -59 . Peridinea 2 . 2200 2100 2000 1900 1800 1700 1600 1500 1400 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 -58 -58.5 -59 -59.5 -63.5 -63 -62.5 -62 -61.5 -61 -60.5 . 5. -60 ( -59.5 2 . -59 ) . Nanoflagellates 2 . 750 -58 700 650 600 550 -58.5 500 450 400 350 -59 300 250 200 150 -59.5 100 50 0 -63.5 -63 -62.5 -62 -61.5 -61 -60.5 -60 -59.5 . 6. . . -59 ( 2 ) , , , ), . , . , Copepoda ( . 8). 85 99%. . – . 321 , . 60 Oithona spp. ( 90% 1 ) Ctenocalanus citer. . , . « » , : . : 5. ( . 7). , – 1,3 3 65,7 . , 2-3 , . . 7. ( 3 , ) 0-200 10 3, – 1,2 51,3 15,2 3. 65,7 3 , – 3,7 . 23,6 . . (0,64) . 322 . . 8. (%) 3 : , , : 1. , : Oithona frigida, Clausocalanus spp., Subeucalanus longicornis, Euphausia frigida, Euphausia triacantha; 2. , : Microcalanus pygmaeus, Oncaea spp., Rhincalanus gigas, Calanoides acutus, Scolecithricella minor. 3. , 1, – 2( +1.7 , ). 6. , , (r = 0,56, p = 0,0002): Calanus simillimus, Subeucalaanus longicornis, Pareuchaeta spp., Ostracoda. Microcalanus pygmaeus, 323 . . . , ((r = 0,89, p < 0,00001) . , (1) (2) : , , , . (3) . (4) , , . 7. : ( 3- ), (2- ). (1) : , (2) , (3) (4) (5) , , : (1) (2) (3) . 324 « : : . , .- . . » . , . : ( ) . . : ( , ) ( , ( , : 2,1-1,9 ), ); , ( ) ; ; , ; . : 2,1 – 1,9 , . , ; , , , ; , ; , ; ( ) . , , « « », 2009 . . 2,1-1,9 . . : , , , , , ). . , , , ( . 5 25%), 2000 , 2,0-1,9 [30]. . . , , 500 », « , 1949 , , . - , , . , , 325 . , . , , . « - « » ), ( . . , » , , , . . , . , , . Si/Al 6. , , , . , . - 2 . 1 , . » « , , . , , . . . , . , , ; . , ( ), . . , . 1 . 18,1%, 76,4%, 4,0%, , . , , 1,5%. . . 4 [25, 12, 4]. (FA) ( ). , . , . . FB 600-1000 80% , 2 . 20% . FB1 FB2 , . . , 30 326 . , 60 200 1000 . : 400 1000 – . . . . FB FD. ( FB ( ) FB, FC, FD. ) , , (FB), FA. : . [23], , , . 2 35 000 84·109 FB . . , . , 1,98 . , FA. , . , , . FC 150 , . FD , . FE – . 1000 . , 970 . FA, . 2,143 . , . , FB ( F . ) FB , . FA , . FB. , , , , . , , . . , , , , , 18 15 2009 . . , , 327 . , , 2007 . « – » (ICDP), (3265 ), : « 2009 . . » 2008-2009 . . - . . . , . . , ( .- ), . . , , , , . . , . 13 : ( ), ? 13 ( . 1). 13 . 3-4‰, . . 13 , . , , , , , , , . . . , [1], , . 13 . , , ( ), , 13 -23 -27‰, , , = 13 - , -32‰. -30 , ( ) 13 [6] ( ) ( ). . -33,50‰ -35,10‰, =4,60‰. -30,30‰‰ ( -31,40‰, ), . [26] ( , 328 , ). ( ). , , . , , . . -31,8‰ 13 27,0‰, 4,8‰. , [16]. , ( , ) , ( ). , . , 13 , . [28] . -60‰, 13 – – -45‰, -30‰. 13 , , 2 12 , . -33‰. 16‰ ), , 13 , -28‰, 13 13 ; 6 115 ; 450 , 13 . , , ( N, O, S), . , , 20% 5% 13 1]. (28,4‰), (-29,1‰), -27,5 -28,2‰) , ( , 70% , 13 -29,0‰ [28, (-30,2‰), (-27,0‰). , , , . : 13 , , . , , [28]. , , , , . , , , , . , . , . , 329 13 , . 0,4‰. . , 13 . 13 [8] ( -31,9‰) -28,1‰ 30,2‰. (-31,9‰), , , 13 ), 13 ; , . 13 , . 13 , . , , ( ) - 2,5-3‰. , ( [24], FB) . 13 : -46‰. -21‰, , . , » 13 ( 13 -33‰), , [24]: FB ( -37‰ -38 -21 -46‰, , -29‰. FA -28,9‰, 13 ) -23,6, -38 -46‰, ( 27,6‰, -25,4, FA - ) -35,5‰. . . 13 -35,5‰. 13 . : , ; , 1,2‰, 13 (0,14‰); , : . ) ; ) , ; ) , , ; , [29]; ) , . ( 330 . 2). , ) , , ; . 2. 13 , ,‰ -25,92 (4) , : ,6 , 7-9 -26,61 (7) -26,19 (8) -37,16 (1) -39,50 (1) -37,37 (4) -43,3 (2) , , , : – . , ( ), , . . . [18] ( ) 374 . , , . , , , . – , , ; .12,7%. , . ( ) 13 0,5 13 ±0,3‰. 1,7‰, 2,2‰. , (365 , 808 ): +3‰ +2,9‰. , , , , , 12 . , ( , . 2) , . , 0,1–1 , , , . , . 13 ( ), , , . ( ) . -26±7‰, 200 . 13 [27], [29], 5‰, . , , 331 , , , . , , ( ). , , . – – , . ( ) . 1 , . , , -25‰, 13 : -11‰ [14], . . 14‰. 13 : 120 – , , , ( [2] -28,0‰). 9,2‰. 13 24,4‰; 140-150 – , 13 -18,8‰, 350-450 13 , , , , – -23 13 23,4‰; 180-190 , . -33‰ 60 190 , (2-3‰) 10‰. , ( 300 , – 13 650 ). 12 , . 13 , - 28±2‰, -25 -10‰ [29]. , , , -30‰ , [9] . 2,5-2,0 -40‰ [29]. . . 13 -39‰ -52‰. 13 ( ) . 1 . , 13 0,1 , , 2,1-1,0 3‰. . , . , , . 1 . , , . 332 13 . (-26-30‰) (-34-41‰) – . , , 13 13 , -27‰, =-46‰ [29], =0,05, – , 50‰. , , , . [21] , . , . , 13 , ( -35,4 , -36,0‰ [22]) . , , . 13 , -33,4‰, -33,1‰. . , . , ( 13 -17,6‰). carb , 13 13 . carb, 11,8‰, , , 13 . , . ( 13 0) . , , . 2, . . , 13 . , , , , . , , , , , , , 333 , . , , , 15 , 10 . 4 . 10 . 1. . . . 1973. . 384 . 2. . . .// . 1984. . 10. . 1530-1532. 3. Barghoorn E. S. et al. // Geochim. Cosmochim. Acta. 1977. V. 41. P. 425-430. 4. Bonhomme M. G., et al // Precambrian research. 1982. V. 18. No 1-2. P. 87-102. 5. Buseck P. R. et al. // Canadian Mineralogist. 1997. V. 35. Part 6. . 1363-1378. 6. Collister J. W. et al // Org. Geochem. 1996. V. 24. No. 8/9. P. 913-920. 7. Cortial F. et al // Org. geochem.1990. V. 15. P. 73-85. 8. Curiel J. A. // Adv. Org. Geochem. 1986. V. 10. P. 559-580. 9. Des Marais D. J. // Mineralogical soc. of Amer. Sp. iss. 2001. v. 43. P. 555-574. 10. Douthhitt C. B. // Econ. Geol. V. 77. P. 1247-1249. 11. Eichmann R. et al // Geochim. Cosmochim. Acta. 1975. V. 39. P. 585-595. 12. Gauther-Lafaye F. et al // Economic Geology. 1989. V. 84. No. 8. P. 2286-2295. 13. ayes J. M. et al // Schopf J. W. (ed). Earths earliest biosphere: its origin and evolution. 1983. P. 93-134. 14. Hoefs J. // Geochim. Cosm. Acta. 1976. V. 40. P. 945–951. 15. Hoering T. C. // Abelson P. H. (ed.). Researches in isotope. 1967. V. 2. P. 87-111. 16. Khavari-Khorosani G. et al // Energy Sources. 1993. V. 15.P. 181-204. 17. Kump L. R. et al // Chem. Geol. 1999. V. 161. P. 181-198. 18. Lewan M. D. // Geochem. Cosm. Acta. 1983. V. 47. P. 1471-1479. 19. Mancuso I. I. et al // Precambrian Res. 1989. 44. P. 137–146. 20. McKirdy D. M. et al // Early organic evolution. Berlin. 1992. P. 176–192. 21. Melezhik V. A. et al // Earth Science Reviews. 1999. V. 47. P. 1-40. 22. Melezhik V. A. et al // Terra Nova. 2009. V. 21. . 119–126. 23. Mossman D. J. et al // Precambrian research. 2005 V. 137. P. 253-272. 24. Mossman D. J. et al // Precambrian research. 2001 V. 106. P. 135-148. 25. Mossman D. J. et al // Terra Nova. 1996. No. 8. . 114-128. 26. Ruble T. E. et al // Org. Geochem. 1994. V. 21. P. 661-671. 27. Schidlowski M. et al // Early organic evolution: implications for mineral and energy resources. Schidlowski M. et al. (eds.). 1992. P. 147-173. 28. Stahl W. J. // Chem. Geol. 1977. V. 20. P. 121-149. 29. Strauss H. et al // Early organic evolution: implications for mineral and energy resources. Schidlowski M. et al. (eds.).1992. P. 176-210. 30. Tyler S. A. et al // Geol. Soc. Am. Bull., 1957. V. 68. P. 1293-1304. 31. Weber F. et al // Terra Cognita. 1983. V. 3. P. 22. 334 : : . , ) .- . . . , . , . ( , ( ) , . , , ( ; , ) ( , ). : , 1. , . . 2. Eosolenides , . , , , – , . 3. , , , . , . 4. , , , , . 5. . , .) , , ( 335 « » ), ( ) , ( ). , , ( ), , ) ( ( , , ) . 1. 1.1. , , ( ) ( . , ) , , . , , , . Sphaeromorphitae 18 Netromorphytae – 4 . Netromorphytae - 4 Acantomorphytae – 5 Acritarcha, , , . : 10 ; ) ( ( 5 , ( , 2008), 5 , 2008; , , , , , ). , , . , , . , . , , . . (2 ) . , (10 . . , . Acritarcha . , Cypandinia, 336 ) Maiasphaeridium. ( ), . , . . , . , , , (German, Podkovyrov, 2009; Podkovyrov, 2009). ( ) , , (2-15 ) . , , , . (V/Cr =0.69–1.28, Ni/Co=1.3–6.7, V/(V+Ni)=0.78-0.90) , , , ; , . , (V/Cr=1.2-2.1, V/(V+Ni)=0.85-0.97) (Podkovyrov, 2009). 1.2. ( ., , ( , Eosolenides, . 1-3; German, Podkovirov, 2009). , . ), , . , – , . , , . , . ( ., , . 2 ). . Eosolenides , . Eosolenides , , . 337 . , , . Eosolenides , – , . 2. 2.1. , . , , , . (120 11 2 , ), . . , . 14 , . . -1, –806, -823. –806 . . Leiosphaeridia sp. . Appendisphaera tenuis – Hamakinia sp. . – 823 . -1. – 806 . -803. , acuminata – 806. – 806, . Vanavarataenia insolita . Cavaspina . – 806. (Appendisphaera tenuis ) , ( ). ( , 1986 ) .). ( , , , (Vanavarataenia , insolita) Cavaspina acuminata , 1990, 1991; , , ). , , , . . 338 , , Cavaspina acuminata ( , , , ). , , , . . 2.2. ( . ) , ) ( . . , . ). , ( ), , ( ) . , , (P, Y, REE). , , , , , , . , ( (Mort et al., 2007 ) .), , . – , ( 0.5-0.7% P2O5). , . (V/Cr =1.9 – 3.7) Ni/Co (3.2-7.5) , . , ( ), , , . 2.3. , ( . 4-6). (Grey, 2005; Willman, Moczyd owska, 2008) (Moczyd owska et al., 1993), Appendisphaera. ( ., , , ), ., , . 5-6), Appendisphaera. 339 , , tabifica ( ), Appendisphaera , . , , . , 2008 ., (CSEOL), . ( «200 4 » ,2 . ( 2009 ), 2009 ). . 2009 : ., . : // . LV . .: , 2009. . 124-127. German T. N. and Podkovyrov V. N. New insight into the Late Riphean Eosolenides // Precambrian Research. 2009. V.173. P. 154-162. Podkovyrov V.N. Mesoproterozoic Lakhanda Lagerstätte, Siberia: paleoecology and taphonomy of the microbiota // Precambrian Research. 2009. V.173. P. 146-153. Podkovyrov V.N., Maslov A.V., Grazhdankin D.V. Ediacarian mudstones from the nortwestern margin of the East European platform // , – CMLM2009. M.: . , 2009. . 133. : . ., . . 2010. . 3( ., // ). ., . // . 340 . . 2010. 3( ). : . . . , , . , , . , ; 1853 2003 ; . . , ICOADS (International Comprehensive Ocean-Atmosphere Data Set) (Worley et al. 2005), 150, 1853 . , (NCEP/NCAR), (ECMWF). ECMWF 1982-2004 . 1.875 1.92 (NCEP/NCAR) . 1.125 1.125 (ECMWF) 3 1972 6 . , . 341 2009 . , 1948 2007 . . , , . , . , . , 3-12 . « ( ) - » 1953-2004 . . . . , . ( 20- 1960 2004 .). , . 1948-2004 . , 6- NCEP/NCAR , ECMWF . . – . . 342 . 1 . , , . (alpha) 4-5 , 1.5-2.5. , 1. (alpha) 15 20% . ( . 1b) , 300 2 ) 2 -10 . -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140 160 -120 260 -100 280 -80 180 -160 200 -140 220 240 -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 -160 200 -140 -120 260 -100 280 -80 220 240 80 80 80 80 60 60 60 60 40 40 40 40 20 20 20 20 0 0 0 0 -20 -20 -20 -20 -40 -40 -40 -40 -60 -60 -60 -80 -80 -80 alpha, Qh, JAN (A) -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 -160 200 -140 220 -120 -100 280 -80 240 260 -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 -160 200 -140 220 240 -120 260 -100 280 -80 -60 (B) -80 beta, Qh, JAN -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140 160 -100 280 -80 180 -160 200 -140 220 -120 240 260 -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140 160 -120 260 -100 280 -80 180 -160 200 -140 220 240 80 80 80 80 60 60 60 60 40 40 40 40 20 20 20 20 0 0 0 0 -20 -20 -20 -20 -40 -40 -40 -40 -60 -60 -60 -80 -80 -80 (C) -100 -80 alpha, Qe, JAN -60 -40 -20 0 20 40 60 80 100 120 140 160 180 -160 200 -140 220 -60 (D) -100 -120 240 260 -100 280 -80 -80 -80 beta, Qe, JAN -60 . 1. -40 -20 0 20 40 60 80 100 120 ( , C) (A, B) 140 160 -100 280 -80 180 -160 200 -140 220 -120 240 260 (B, D) (C, D) . ( . 1b,d) 10-20 . -40-50 3-4 (beta) 2 , . , . . 2. 103 2 (alpha). (beta) , , . 343 0 -5 Gulfstream beta -10 Subtropical Atlantic -15 -20 Tropical Atlantic -25 -30 0 5 10 15 20 25 30 alpha . 2. (beta) (alpha). , 2 150 . , , , . , 1948 -100 -80 -60 -40 -20 . 2004 0 20 240 . 60 80 100 120 140 160 180 -160 200 -140 220 -120 240 -100 260 300 -80 280 80 80 60 60 40 40 20 20 280 260 240 220 200 180 0 0 160 140 -20 -20 -40 -40 -60 -60 -80 -80 120 100 80 60 40 20 -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140 160 . 3. 200 -160 220 -140 240 -120 260 -100 280 -80 (1948-2004), , NCEP/NCAR ICOADS. 344 180 . 3 , , NCEP/NCAR ICOADS. , , , 2 300 . , 6- , 1948-2004 NCEP/NCAR . , , 2 ±18 , . . , , . , , . . , , , , – 4 , , , . WOCE CLIVAR, , , . . 4. 2 2 ICOADS « . » (re-sampling), 1.5 1014 1, . – . . 4 1, . , . . . 345 30 -100 -80 -60 -40 -20 80 60 26 1 40 24 20 -100 0 20 80 4 28 3 -80 -60 -40 60 2 -20 40 20 20 0 22 wind speed, m/s 20 -200 to -50 -50 to -30 -30 to -20 -20 to -10 -10 to -5 -5 to -2 -2 to -0.15 0.15 to 2 2 to 5 5 to 10 10 to 20 20 to 30 30 to 50 50 to 100 100 to 200 18 16 14 12 10 8 6 4 2 0 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 Tw-Ta . 4. ( 1 ). (1014 ). , . , , 0.14 14 10 , 6 (0.81 1014 , ). , . , 0.5 1.3% . , 1853 ). ( . 25 , . , . 1980-1920 , , . , , . 0.2 346 4%, 2 ±7 . . WMO1100 Lindau (1995), . , . . . , , , , , , . 120- , 1880 . ( ) . -100 70 -90 -80 -70 60 -60 -50 -40 -30 -20 -10 0 10 +4 50 40 -6 30 Qh 2ePDF-trad 20 10 0 Jan 1880-2002 -10 -20 -100 -90 -80 ) -70 -60 -50 70 -100 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 20 -90 -80 -30 -20 -10 0 10 20 -20 -20 -100 -60 -50 -40 -30 -20 -10 0 10 20 70 60 +7 50 40 -9 30 Qe 2ePDF-trad 20 10 0 Jan 1880-2002 -10 -10 -40 -70 -90 -80 -70 -60 -10 -50 -40 -30 . 5. , -20 ( 1980-2002 -10 0 -20 20 10 ) . . , . , . , , , , , . . 347 (da Silva et al. 1994, Josey et al. 1999, Lindau 2000). , . Dobson and Smith (1988), Lind et al. (1984), Reed (1981), Bignami (1995) . , . . . « – », . , , . , Reynolds and Smith (1994, 1996), Yu et al. (2004, 2006), Kent and Brohan (2005). . , 1948-1950 . , , , . «NEMO-ORCA» OPA- , 9.1 . , (Madec et al. 2005), (Tregurier et al. 2004, Barnier et al. 2006, «NEMO-ORCA» DRAKKAR. c 2007). . , – 31 67 1/12° 1/12°. (2°, 0.5°, 0.25°, 1/6°, 1/12°). 2° 2° 5 NEMO-ORCA 1950 2006 . , . – (Barnier et al. 1995, arnier 1998, Gulev et al. 2003, 2007) 348 (Large and Yager 2004, 2006, Boening et al. 2007). . ( , ( , ) , , . , , , , Qnet (t ) © Qnet (t ) ) . , Q SST (t ) TS (t ) , T Q’net(t) – Q ), – T 30 55 ( , . , : (1) ( , (Barnier et al. 1995, Gulev et al. 2007), 2 ·K-1, SST(t) , TS(t) – ) , . . , , . (Gulev et al. 2007) , , , , . . , , , . ( . 2) , . .6 7 , , , . 349 . 6. ( 3 ) . 7. ( 3 ) . . 7 , (1). , .6 7 . 1° 1° 1/6° 1/6°. , . ( , ) 1/12° 1/12° 1/15° 1/15°, :« ?». . 350 , , , , . Latif et al. (2006) , – . 2 , 0.25 2° 2° ( 1/6 . ) « » , . , ±1 , 4-8 . . , , , . 1. 1º 1/6º ATL6 (after Chelton et al., 1998) ATL1 . ATL1 ATL6 1/6° 18.5 1° 111.0 230 ATL6: ATL1: 20° . 17.3 103.8 55 ATL6: ATL1: 45° . 13.0 78.0 30 ATL6: ATL1: 60° . 9.3 55.5 10 ATL6: ATL1: 1 . , 1/6º, 45º , , ., . 1º , , . , , . , 351 – . . , ( , , ) . , 20- , , . 30 , (Koltermann et al. 1999, Falina et al. 2006, . 2003). . 8 ATL6 ATL1 1º . 1/6º. , ( 3.4 c,d), . , , , . , , . . 2007), Marsh et al. (2005). Gulev et al. (2003, , » . .9 , 2007). 1° 1° 1/6° 1/6° (Gulev et al. 1° 1° , . , , 1/6° 1/6° , , . , . , , . 352 . 8. , T,S – 1º , – – . – 1/6º , D – , – 1/6º 1/6º . STMW – . , , SPMW – – 1/6º 1º , LSW 1/15° 1/15° (Gulev et al. 2007). Gent and 0 1200 McWilliams (1990) (GM-90), 2 2 . . 10 . , 800 1/3° 1/3° 2 2 1/6° 1/6° . 353 . 1/4 1/12 . 1/6 . , , , . 1/12 . . – . 8 . . 5-7 3 . , . . , 1980, . 1990, . . CLIPPER , . . , . . . , . . . , 1/6º , . , 1/6º , . 354 . 9. ( ), 1° 1° ( ) 1/6° 1/6° ( ) (Gulev et al. 2007). 355 . 10. 1/15° 1/15° ( ) 1/3° 1/3° ( 1/3° 1/3° ) . Gent and McWilliams (1990). 356 : . . . 2009 . , . , Makkaveev, 2007) ( , , 2005, , 2008; , . , . , . . , , , , , . . : ; , 1970). ( , . – , . , – ( ) « . ( , , » ). . , , ( , ). . , . 357 , : 1. , ( ). , , . 2. , ( ). , , . 3. , , , , . , ( , ) , Ca/Mg , 1960; Berner, 2004). , , ( ( ., 2005). , , , , . , , ). . 8,23 8,02 . ( , .( 400 ) ). ( ) 7,95 8,32 -1 274 448 . 2 . 1,75 3,40 , , , 30 40 1018 . . . , , . , . , ) ( . , : (1) , . 2 . ) : , 358 ( , ; – . 2 , « » . , . , , . , ( …, 2008). . , , , . , 2 . 3.5 Ctot ( 3.0 ) , 2.5 2.0 , 1.5 . . 1. 440 pCO2 400 90 – 360 120 320 . 2 280 25, 140, 260 240 44 . M Coc 350 2 5, 130, 240, 40 330 36 410 . 32 28 500 400 300 200 100 , 0 , 2008) 40 . 1. 1 ( 20-30 ( .2). – ( 2 1018 ( ) ; -1 2 ); 3 – .. – , – . 359 25000 96 40 92,3 ) (2003) . 20000 (ppm2 , 15000 . 10000 92 39 . , , 5000 (400 39,6 ) 23,1 125 0 0.001 0.01 0.1 ( -1 , 1 ) . 100 , ) 92,3 , 80 , . 2 23,1 ( 39,6 , 60 , . 40 , 13 11 9 20 , 0 0.001 0.01 0.1 ( -1 ( 1 .2) ) , 20 pCO2. 92,3 ) 92 . 16 . pH2 . , 40 ( 12 . , pCO2. 8 39,6 . 4 23,1 18 23, 0 0.001 0.01 0.1 ( -1 1 13, 11 9 . . , ) . 2. pCO2, Ctot pCO2 pH . , , . . 360 , , , , . , , – , 2 . (1960). . . , , , 2 . , , 2 . ( 100 10 , 1999) 19 . 2, 4 ) ( . ( 70 , 2000). . , 2. 4 . , . . , , . , , . . . – « . » , , , ( , 2009). , . , , , 2001). , - ( ), , , , . . 6, , ( ) , . , , 361 . , , , 2002; Bond et al., 1993; Pelejero et al., 2005). ( , 2008) ( , 2002), . . 362 , , : : . , . . . , . , . . , , , , . , . 50 , . , . , . . . 1. .. , , . , . , 5-20%, 4-8% , – (4-5% ( (Si, P, C , . , 10% ) ). , CO2) 363 2. , , ), , . . ( , , , , : (10-20 , , , .1), 15 ( , ). , ), (1.5-2 , 16 , , 100 (3-6 , ), ), , , , . , .1, , . , , , , , , , , , , . , , , , , , , , , , , , , , . 1. ( ) Si Al 1.0 30 8.5 760 2.2 3.4 9.0 53 11 86 3.0 100 14 3.0 2.9 29 19 250 29 17 63 17 44 1.0 8.8 11 1.8 27 8.8 560 2.4 1.1 5.3 61 17 100 5.9 100 20 2.8 3.8 31 44 470 18 12 84 29 93 0.2 3.6 14 1 Ag As Au, Ba Be Bi Cd Ce Co Cr Cs Cu Ga Ge Hf La Li Mn Mo Nb Ni Pb Rb Re Sb Sc 364 1.7 34 4.9 540 1.6 2.5 8.3 50 11 45 4.1 55 13 1.2 2.2 22 24 500 16 2.9 41 26 39 0.5 6.8 5.9 1.6 30 7.6 590 2.1 2.0 6.9 58 14 81 4.8 87 17 2.4 3.5 28 33 440 20 10 67 26 68 0.4 5.6 11 2 1.7 58 9.7 630 2.6 1.8 6.2 55 18 93 4.2 140 17 2.5 4.5 26 37 1100 14 15 67 25 76 0.8 5.3 12 oc 0.07 10 1 800 3 0.01 0.3 73 20 100 12 57 30 2 6 32 60 700 2 20 96 20 200 0.3 1.5 13 2 oc 24 5.8 9.7 0.8 0.9 180 21 0.7 0.9 0.9 0.3 2.4 0.6 1.2 0.7 0.8 0.6 1.6 7 0.7 0.7 1.2 0.4 3 3.5 0.9 , , Se Sn Sr Ta Te Th Ti Tl U V W Y Zn Zr 8 5 480 0.17 4.2 3.9 1200 0.7 10 99 8.1 12 140 74 Ca : , Si 12 4 140 0.55 0.3 5 2100 4.8 13 250 21 25 160 120 Al 6.6 6.6 200 0.8 1.7 7.4 399 2.6 14 20 2.4 29 140 150 7.8 5.6 290 0.66 2.1 7.2 2700 2.5 13 180 7.8 23 140 120 9.3 5.7 230 0.8 1.8 7.8 2800 2.2 9.9 180 2.7 23 160 200 0.1 10 450 3 1 12 4300 1 3.2 130 10 26 80 200 93 0.6 0.5 0.3 2 0.6 0.6 2 3 1.4 0.3 0.9 2 1 - , , - , 1 - 2 . , . , – . . .2, . , 50% , ( , ( , ( , , , , , , - ), , , ) , , , ). 2. ( . ( ), . . ( ), . Al . ( ), Si ) . , . , . Ag As Au, Ba Be Bi Cd Ce Co Cr Cs Cu Ga 0.23 15 1.3 400 0.40 0.09 0.64 19 28 17 1.1 47 3.1 0.13 0.44 1.0 0.75 0.4 0.04 0.08 0.4 2.5 0.6 0.5 0.85 0.2 0.43 20 4.6 570 1.4 0.30 1.6 33 20 57 4.3 155 12 0.24 0.8 0.52 1.0 0.6 0.3 0.3 0.54 1.2 0.6 0.7 1.5 0.6 0.60 20 740 0.75 0.11 40 17 5.5 120 2 50 6.2 0.6 0.67 1.0 0.3 0.03 4.4 0.3 0.5 1.4 0.7 0.5 0.4 0.54 17 260 1.65 0.15 225 33 4.5 92 9.2 44 9.8 0.68 28 235 1.9 1.0 21 39 37 86 3.6 42 7.8 365 Hf La Li Mn Mo Nb Ni Pb Rb Re Sb Sc Se Sn Sr Ta Te Th Ti Tl U V W Y Zn Zr 0.52 9.7 13 270 48 7.2 59 7.2 15 0.049 1.3 4.8 0.57 1300 0.20 2.7 1000 0.17 19 80 0.54 13 40 33 0.24 0.4 0.54 0.54 3.0 2.5 1.4 0.3 0.4 0.1 0.2 0.8 0.1 2.7 1.0 0.7 0.83 0.24 1.9 0.8 0.07 1.1 0.3 0.44 : Si , ( . 2.6 17 42 180 122 5.5 130 18 60 0.15 3 11 7.6 1.2 220 0.40 0.21 7 2200 0.75 20 230 2.1 21 100 80 Al 0.7 0.55 1.0 0.54 6.8 0.46 1.5 0.6 0.65 0.75 0.8 0.8 1.1 0.2 1.1 0.5 0.2 0.75 0.56 0.3 1.4 1.2 0.9 0.7 1.1 0.5 0.75 12 18 83 80 5 120 6 28 0.15 0.65 5.4 3.1 1.2 140 0.33 6 900 1.25 44 140 1.3 12 95 35 0.25 0.4 1.0 0.33 2.7 0.3 1.9 0.35 0.64 0.15 0.07 0.5 0.25 0.3 1.0 0.6 1.2 0.4 0.26 3.4 0.6 0.06 0.5 0.6 0.3 - 1.3 17 32 225 40 10.5 50 12.5 96 3 6.4 2.5 2.0 300 0.35 7 2150 1.3 15 100 1.5 15 85 50 1.5 18 13 1630 24 3.2 120 16 52 0.10 3 9.2 2.3 2.5 690 0.26 <0.7 4.4 1800 3.6 50 110 2.1 33 60 67 , - .1). ; , , , , , , , , , , . , – , , , , . , , . : , ; , , . , , , . 27 . ( ), , 16, , , , , , , , . , , . 18 , Ba) – (Mo, Ni, U, V, Cd, Cr, , ; 14 (Li, Rb, Cs), , 366 7, , . - : 20 , (Co, Cu, Mo, Ni, . 10 Pb, Zn, V, Bi, Se, Sc) , – . 17 . 17 ( . Mn, Co, Pb, Sb, Sn, Bi, – (Ba, Cd, Cr, Mo, Zn). . , (Mn, Bi, Cd, Sn, Sr, Tl) (Ba, Ga, Li, Cu, Mo, Se, Sn). . ) 5 21 , , , , , , . , , , – , , , . 3. 1. 15 Au, Mo, As, Sb, U, Re, Cu, Te, Tl, V, Zn) 2. . . 3. (Bi, Se, Ag, Cd, 100 . , - . 4. , . 367 : . . . – ( ) - : , , , . . . , , . . . , . , . . , . , , . . . , . , . ( ) - : , Ni- , , 13 ( ), , (Keller et al., 1995). , , ( ), , . . . , , . , 368 . , , , . , , . , . (Keller et al., 2002) , : ( ). , , , , , , (Pospichal, 1996) ( .1). . 1. ( .527) ( .690) ( Pospichal, 1996, ). 13 ( , . 2). 369 . 2. , , ( (~70-67 , Pospichal, 1996, ). .), , . , , , , . , 90% , (D’Hondt et al., 1996). , . . , . , (Alegret et al., 2004). 2. 90% , 70% . . . , . , (Jeffery, 2001). , . , , – 370 (Hansen et al., 2004). , , . , , - (Surlyk, Johansen, 1984). , ( , , ), . . , , , , . , . 13 ? . . (~68.5-65.5 , .) 18 6°C. , , . 87 Sr/86Sr. . , (Hallam, Wignall, 1997). , , , , , , , ), . , ( , 1988 , ) , , , . : ( ) . , , – , . ) . (Alvarez et al., 1980). ( 65 ). . . , . , 10 25 . . – , , , , . ( 180 280 65 . ) . 371 , « », . . (Alvarez et al., 1980), , , . , , . . . CaCO3 CaSO4, ), CO2 . , , . , , . , , . 100(Alvarez, , , , 1000 , 1987). : ( , ), , , , , , , (Carlissle, Braman, 1993) . . , ( . 3) . , , , . . Textulariina spp. Osangularidae Gavellinellidae . 1500-1800 , (Spiroplectammina spp.). , . 50 . . , . , , , . 372 , , . 3. . – ( ( ( 25 0.6 ) eugubina) ), ; , – – (Montanari, Koeberl, 2000). . 4. : , 2004, Yax-1 ( Keller et al., ) 373 , 60 1511 , 2001-2002 . . 4). . Yax-1 ( 617100, . , . ( Keller et al., 2004),, , (65.4–65.2 700 .) . , . , . 200 , . 600 540 , , ; , (Urrutia-Fucugauchi et al., 2004). ( ) 6.1 ; (Shipley et al., 2004). , , . . 5) , ( (Chatterjee, 1997;.Chatterjee et al., 2003). . 600 450 . , (65 . 12 , , .) ( 29R), . , . . 40 , 65 . , , . 374 . 5. ( Chatterjee, 1997, ) , . 9 (S-L9) 21 , , 10- 5 . (Chatterjee,, 1997). : 40. , , (87% . DSDP 576; , – , KT- , ) (Kyte et al., 1994). , , , , , , , « , , . ». , , , , , , . . . , . 1-2 . , (Bhandari et al., - 1994). , . , . (48°45' , . 30 . ., 32°10' .) , . , 24 375 1 25000 220 , 12-97 . 65.17 ± 0.64 . , , . « » - . Ar-Ar , , . , . . . (Gurov et al., 2006), (42° 35' ., 94° 33' .) (Frankel, 1999). 100- , 35 . - . 10 . , 12 4 . . . . , . , «Earth Impact database, PASSC» , 1988 . Ar-Ar65.7±1 . . . (69.6º ., 64,9º .), 1970. (Badjukov et al. 1992; . . 73.8±0.3 . . , Trieloff et al., 1998; . .). , . , 120 , , , . , 10 , (Frankel, 1999) , (Earth Impact Database. Univ. of New Brunswick) 1-2 66 . . . 70.3±2.2 . . 2001 . , , (Silverpit) 20 60-65 1500 . (Stewart, Allen, 2002). 40 . 50-300 . , . . 120 3 , . , 65-60 . 65 . . , 74-45 , , , . . , (25°57' 376 (49°42' (Eagle Butte). . , ., 52°41' .) ., 110°30' .), 10 . (Vista Alegre) 9.5 . . 65 (Crósta et al., 2004). . ( ), , . , , , , , , , . , . , , . , . . . (SO2, HCl, , , , , 2) pH , , (Hallam, 1987). , , , , 2. ( 2, 10 ) , (Wignall, 2001). , (Sahni et al., 1994). . (Wilf et al., 2003), ) ( ( ) . , 65.8-65.6 66.0-65.9 ., . . . pCO2 , , ~0.5 . . pCO2 , , , ~1.5 . . pCO2 . . CO2 , , . , , , , . , (Tschudy, Tschudy, 1986). , , , , – . ( , , CO2 , , .). , , , . - 377 . , , , (Chatterjee, Rudra, 1996), , . 1 , . . ( – . (Bhandari et al., 1994). . ) , , . , . 26-30 . . ., , 35, 65 95 . , . . . . 2-3 , , , , (Taylor, Cordes, 1993). – 30±3 . . . , . , , (Rampino, Haggerty, 1995). 378 - : . . . , , , , (Hemithyris psittacea . Glaciarcula spitzbergensis), (Elliott, 1956), ( )– , 1997 ). ( « »( . 1), . , , , , , . ( ., 2005; – . - , 2008), , , . « » ( . 3, 4). ( , . 2), , , . Novocrania anomala ( ( Nymphon giltayi, « », 54- ) Cryptopora gnomon ( ( . 5). , , 2007 .) . 379 : . 1. ( – , , – , 1978). – ; – “ ”: – , – ; . . 2. Herman, 1989). 380 ( . 3. 300-500 ( , 1960). . 4. … 2008). 381 . 5. Novocrania anomala, . , . 382 – Cryptopora gnomon. – – . 6. . 1. Terebratulina retusa, 2. Macandrevia cranium, 3. Dallina septigera , Terebratulina retusa, Dallina septigera, Macandrevia cranium, , ( . 6), , . , ( , ) , ), 383 . . . spitzbergensis Glaciarcula Hemithyris psittacea. ) –1,720 . G. spitzbergensis 32,68 ‰ ( , 1990), G. spitzbergensis . 13 , « 10,2 ( » , 1997 ). H. psittacea . -1,840 . , ( 30 , 1999). ( 23 , ) , 12 - 13 . , 8, , 5 ( H. psittacea , , , 7 . 7). , , , ( ., 2009). : 7 390 , . . , . (Pycnogonida) . , , . . ( .8). , , , , . 14 Nymphon 9, . (Herman, 1989; ., 2005) , : - – ( . . 2) , . , , . , . 384 , , , , , . . , , ( ), . . ( ) ( . 9, 10). ) ). Colossendeis angusta ( Ascorhynchus abyssi ( « Achelia : Achelia borealis neotenica - « » » , Achelia borealis japonica ( . 11, 12). . 7. (“ Hemithyris psittacea ”, 54, 2007 , . 4988). . 8. Nymphon . 385 . 9. , I ( Colossendeis angusta , 1929). . 10. Colossendeis angusta 5450 , 1989). 386 . I ( , , , , . , ( ) , , , ). . 11. , 1933. Achelia borealis japonica . 12. ”, 54- - Achelia borealis neotenica , 2007 . 387