ÝËÅÊÒÐÎÍÍÎ-ÌÈÊÐÎÑÊÎÏÈ×ÅÑÊÈÉ ÀÍÀËÈÇ ÏÐÎÍÈÊÍÎÂÅÍÈß SERRATIA GRIMESII Ò. Í. Åôðåìîâà

advertisement
2015
ÖÈÒÎËÎÃÈß
Ò î ì 57, ¹ 10
ÝËÅÊÒÐÎÍÍÎ-ÌÈÊÐÎÑÊÎÏÈ×ÅÑÊÈÉ ÀÍÀËÈÇ ÏÐÎÍÈÊÍÎÂÅÍÈß
ÓÑËÎÂÍÎ-ÏÀÒÎÃÅÍÍÛÕ ÁÀÊÒÅÐÈÉ SERRATIA GRIMESII Â ÊËÅÒÊÈ HeLa
© Å. Ñ. Áîæîêèíà, Ë. Â. Êåâåð, ß. Þ. Êîìèññàð÷èê, Ñ. Þ. Õàéòëèíà,1 Ò. Í. Åôðåìîâà
Èíñòèòóò öèòîëîãèè ÐÀÍ, Ñàíêò-Ïåòåðáóðã, 194064;
1 ýëåêòðîííûé àäðåñ: skhspb@gmail.com
Å. Ñ. Áîæîêèíà è äð.
Óñëîâíî-ïàòîãåííûå áàêòåðèè Serratia grimesii ñïîñîáíû ïðîíèêàòü â êëåòêè ýóêàðèîò, ãäå îíè îáíàðóæèâàþòñÿ â âàêóîëÿõ èëè ñâîáîäíî ëåæàùèìè â öèòîïëàçìå (Efremova et al., 2001; Bozhokina et al.,
2011). Îäíàêî ýôôåêòèâíîñòü èíâàçèè ýòèõ áàêòåðèé íèçêà, è ìåõàíèçìû èíâàçèè, îïðåäåëÿåìûå íà÷àëüíûìè ñòàäèÿìè ïðîöåññà, íåèçâåñòíû.  íàñòîÿùåé ðàáîòå ýôôåêòèâíîñòü èíâàçèè áûëà ïîâûøåíà
ââåäåíèåì â êóëüòóðàëüíóþ ñðåäó N-àöåòèëöèñòåèíà (Bozhokina et al., 2013), 24-÷àñîâàÿ èíêóáàöèÿ ñ
êîòîðûì ïðåäøåñòâîâàëà èíôèöèðîâàíèþ êëåòîê HeLa M áàêòåðèÿìè.  ïðåïàðàòàõ êëåòîê, îáðàáîòàííûõ N-àöåòèëöèñòåèíîì, îáíàðóæåíî äâà âàðèàíòà ïðîíèêíîâåíèÿ áàêòåðèé.  áîëüøèíñòâå ñëó÷àåâ
ïðîíèêíîâåíèå áàêòåðèé âíóòðü êëåòêè-õîçÿèíà ñîîòâåòñòâóåò îïèñàííîìó â ëèòåðàòóðå ìåõàíèçìó
«çàñòåæêà-ìîëíèÿ», ïåðâûì ýòàïîì êîòîðîãî ÿâëÿåòñÿ âçàèìîäåéñòâèå áàêòåðèàëüíîãî èíâàçèíà ñ ïîâåðõíîñòíûì ðåöåïòîðîì êëåòêè-õîçÿèíà. Îäíàêî â ðÿäå ñëó÷àåâ áàêòåðèþ çàõâàòûâàþò âûðîñòû êëåòî÷íîé ïîâåðõíîñòè, âîçíèêàþùèå, ïî-âèäèìîìó, â îòâåò íà âíåäðåíèå â êëåòêó áàêòåðèàëüíûõ ýôôåêòîðîâ, êàê ýòî ïðîèñõîäèò â «òðèããåðíîì» ìåõàíèçìå èíâàçèè. Äëÿ òîãî ÷òîáû ïîäòâåðäèòü ñóùåñòâîâàíèå äâóõ ìåõàíèçìîâ èíâàçèè èëè âûÿâèòü ïðåèìóùåñòâåííûé ìåõàíèçì, íåîáõîäèìî äàëüíåéøåå
èññëåäîâàíèå, âêëþ÷àþùåå â ñåáÿ âûÿâëåíèå áàêòåðèàëüíûõ è êëåòî÷íûõ ôàêòîðîâ, ó÷àñòâóþùèõ âî
âçàèìîäåéñòâèè.
Ýëåêòðîííî-ìèêðîñêîïè÷åñêèé àíàëèç ïðîíèêíîâåíèÿ óñëîâíî-ïàòîãåííûõ áàêòåðèé
Ê ë þ ÷ å â û å ñ ë î â à: èíâàçèÿ áàêòåðèé, N-àöåòèëöèñòåèí, Serratia grimesii, ñòàäèè èíâàçèè.
ñëåäîâàíèé. Îñîáåííî ýòî êàñàåòñÿ íà÷àëüíûõ ñòàäèé èíâàçèè áàêòåðèé. Èìåííî ýòè ñòàäèè îïðåäåëÿþò ìåõàíèçì âõîæäåíèÿ áàêòåðèé â ýóêàðèîòè÷åñêóþ êëåòêó.
Ê ñîæàëåíèþ, ýòè ñòàäèè òðóäíî îáíàðóæèòü èç-çà èõ áûñòðîòå÷íîñòè. Òåì íå ìåíåå èíîãäà óäàåòñÿ âûÿâèòü ÿìêè
èëè âäàâëèâàíèÿ áàêòåðèé â ïîâåðõíîñòü èíôèöèðîâàííîé êëåòêè èëè, íàïðîòèâ, ñïåöèôè÷åñêèå âûðîñòû êëåòî÷íîé ïîâåðõíîñòè. Òàêîãî ðîäà êàðòèíû ìîãóò óêàçûâàòü íà ðàçëè÷íûå ìåõàíèçìû, èñïîëüçóåìûå áàêòåðèÿìè
äëÿ âõîäà â êëåòêó-õîçÿèíà.
Ñïîñîáíîñòüþ ïðîíèêàòü â êëåòêè ýóêàðèîò îáëàäàþò íå òîëüêî ïàòîãåííûå, íî è óñëîâíî-ïàòîãåííûå áàêòåðèè, îäíàêî ìåõàíèçìû èõ ïàòîãåííîñòè èçó÷åíû î÷åíü
ìàëî. Ðàíåå ìû ïîêàçàëè, ÷òî èíêóáàöèÿ òðàíñôîðìèðîâàííûõ êëåòîê ñ áàêòåðèÿìè Serratia grimesii, ïðîäóöåíòàìè ïðîòåàçû ÅÑÐ32/ãðèìåëèçèí (Khaitlina et al., 1991;
Bozhokina et al., 2008), ïðèâîäèò ê ïîÿâëåíèþ áàêòåðèé
âíóòðè êëåòêè-õîçÿèíà, ñíà÷àëà â âàêóîëÿõ, à çàòåì
ñâîáîäíî ëåæàùèõ â öèòîïëàçìå (Efremova et al., 2001;
Gamaley et al., 2006; Bozhokina et al., 2011). Ïðè ýòîì
èíôèöèðîâàííûìè îêàçûâàþòñÿ òîëüêî îêîëî 10 % êëåòîê, èíêóáèðîâàííûõ ñ áàêòåðèÿìè, ÷òî ñîîòâåòñòâóåò
ñòàòóñó óñëîâíîé ïàòîãåííîñòè ýòèõ áàêòåðèé (Grimont,
Grimont, 2006), íî çàòðóäíÿåò âûÿâëåíèå ðàííèõ ñòàäèé
èíâàçèè.
Ïîâûøåíèå ÷óâñòâèòåëüíîñòè êëåòîê ýóêàðèîò ê áàêòåðèàëüíîé èíôåêöèè êàê â îðãàíèçìå, òàê è â ýêñïåðèìåíòàëüíûõ óñëîâèÿõ ìîæåò çàâèñåòü îò ôèçèîëîãè÷åñêîãî ñîñòîÿíèÿ êëåòêè-õîçÿèíà: ìåòàáîëèçìà ýóêà-
Ïàòîãåííîñòü ìíîãèõ áàêòåðèé îñíîâàíà íà èõ ñïîñîáíîñòè ïðîíèêàòü â êëåòêè ýóêàðèîò è ïåðåäâèãàòüñÿ èç
êëåòêè â êëåòêó, èñïîëüçóÿ àêòèíîâûå êîìïîíåíòû öèòîñêåëåòà è ñèãíàëüíûå ñèñòåìû êëåòêè-õîçÿèíà (Cossart,
Sansonetti, 2004; Haglund, Welch 2011). Ïî ñîâðåìåííûì
ïðåäñòàâëåíèÿì, ïàòîãåííûå áàêòåðèè ïîïàäàþò â êëåòêó-õîçÿèíà ñ ïîìîùüþ îäíîãî èç äâóõ ìåõàíèçìîâ. Â ìåõàíèçìå «çàñòåæêà-ìîëíèÿ» (zipper mechanism) — ýòî
ïðÿìàÿ èíòåðíàëèçàöèÿ áàêòåðèé â ðåçóëüòàòå âçàèìîäåéñòâèÿ áàêòåðèàëüíîãî àäãåçèíà ñ ïîâåðõíîñòíûì ðåöåïòîðîì êëåòêè-õîçÿèíà. Ýòî âçàèìîäåéñòâèå àêòèâèðóåò
ñèãíàëüíûå ñèñòåìû êëåòêè-õîçÿèíà è ïðèâîäèò ê óìåðåííûì èçìåíåíèÿì öèòîñêåëåòà (Tiney, Portnoy, 1989;
Pizarro-Cerda et al., 2012).  òðèããåðíîì ìåõàíèçìå (trigger mechanism) áàêòåðèè çàõâàòûâàþòñÿ âûðîñòàìè êëåòî÷íîé ïîâåðõíîñòè, îáðàçîâàíèå êîòîðûõ èíäóöèðóåòñÿ
áåëêàìè, ââåäåííûìè áàêòåðèÿìè â êëåòêó-õîçÿèíà ÷åðåç
àïïàðàò ñåêðåöèè III òèïà (Sansonetti, 1998; Carayol, Tran
Van Nhieu, 2013; Valencia-Gallardo et al., 2015). Ýòè ïðîöåññû ñâÿçàíû ñ ìîðôîëîãè÷åñêèìè èçìåíåíèÿìè êëåòêè-õîçÿèíà è çíà÷èòåëüíûìè ïåðåñòðîéêàìè åå öèòîñêåëåòà.
Íåñìîòðÿ íà òî ÷òî áèîõèìè÷åñêèå îñíîâû ýòèõ ïðîöåññîâ çà ïîñëåäíèå ãîäû èíòåíñèâíî èçó÷àëèñü è ïîëó÷åí ðÿä íîâûõ âàæíûõ ôàêòîâ (Pizarro-Cerd*a et al., 2012;
Rutherford, Bassler, 2012; Navarro-Garcia et al., 2013; Lee
et al., 2014; Valencia-Gallardo et al., 2015), èõ âèçóàëèçàöèÿ êàê íà ýëåêòðîííî-ìèêðîñêîïè÷åñêîì, òàê è íà ñâåòîîïòè÷åñêîì óðîâíå íåñîìíåííî òðåáóåò äàëüíåéøèõ èñ714
Ýëåêòðîííî-ìèêðîñêîïè÷åñêèé àíàëèç ïðîíèêíîâåíèÿ óñëîâíî-ïàòîãåííûõ áàêòåðèé
715
ðèîòè÷åñêîé êëåòêè, ñòàäèè êëåòî÷íîãî öèêëà,
ïðîëèôåðàòèâíîé àêòèâíîñòè è ñòåïåíè èììîðòàëèçîâàííîñòè êëåòîê (Velge et al., 1995, 1997). Ïîêàçàíî òàêæå,
÷òî àíòèîêñèäàíòû îêàçûâàþò ñóùåñòâåííîå âëèÿíèå íà
êóëüòèâèðóåìûå êëåòêè, âûçûâàÿ ïåðåñòðîéêè àêòèíîâîãî öèòîñêåëåòà (Åôðåìîâà è äð., 2004) è èçìåíÿÿ èõ ÷óâñòâèòåëüíîñòü ê áàêòåðèÿì (Ãàìàëåé è äð., 2006; Gamaley
et al., 2006).  ÷àñòíîñòè, îáðàáîòêà êëåòîê N-àöåòèëöèñòåèíîì ïðèâîäèò ê 2—3-êðàòíîìó óâåëè÷åíèþ ýôôåêòèâíîñòè èíâàçèè (Bozhokina et al., 2013).  íàñòîÿùåé
ðàáîòå ìû èñïîëüçîâàëè ýòîò ýôôåêò, ÷òîáû âûÿâèòü íà÷àëüíûå ñòàäèè ïðîíèêíîâåíèÿ áàêòåðèé S. grimesii â
êëåòêè HeLa, îáðàáîòàííûå è íå îáðàáîòàííûå N-àöåòèëöèñòåèíîì.
Ìàòåðèàë è ìåòîäèêà
Êëåòêè êàðöèíîìû øåéêè ìàòêè ÷åëîâåêà HeLa M,
ïîëó÷åííûå èç Ðîññèéñêîé êîëëåêöèè êëåòî÷íûõ êóëüòóð
(Èíñòèòóò öèòîëîãèè ÐÀÍ, Ñàíêò-Ïåòåðáóðã), êóëüòèâèðîâàëè íà ñðåäå aÌÅÌ, ñîäåðæàùåé 10 % ýìáðèîíàëüíîé áû÷üåé ñûâîðîòêè è 1 % NEAA (non-essential amino
acids), ïðè 37 °Ñ â àòìîñôåðå 5 % CO2 â òå÷åíèå 2 ñóò äî
äîñòèæåíèÿ ~70%-íîãî ìîíîñëîÿ. Ïîñëå ýòîãî çàìåíÿëè
êîíäèöèîíèðîâàííóþ ñðåäó ïîðöèåé ñâåæåé ñðåäû è äîáàâëÿëè 10 ìÌ N-àöåòèëöèñòåèí (NAC) (Sigma) íà
22—24 ÷.
Áàêòåðèè S. grimesii âûðàùèâàëè íà ïèòàòåëüíîì
áóëüîíå LB, ñîäåðæàùåì 1 % ïåïòîíà, 0.5 % äðîææåâîãî
ýêñòðàêòà è 1 % NaCl (pH 7.0), â òå÷åíèå 26 ÷ ïðè 37 °Ñ ñ
àýðàöèåé. Çàòåì ñóñïåíçèþ áàêòåðèé â ðîñòîâîé ñðåäå
öåíòðèôóãèðîâàëè ïðè 13 000 îá/ìèí â òå÷åíèå 5 ìèí.
Îñàäîê ðåñóñïåíäèðîâàëè â ñðåäå aÌÅÌ áåç ñûâîðîòêè
è äîáàâëÿëè ê êëåòêàì HeLa M, ïðåäâàðèòåëüíî ñìåíèâ
ñðåäó, ñîäåðæàùóþ NAC, íà ñâåæóþ ñðåäó. Êëåòêè
HeLa M èíêóáèðîâàëè ñ áàêòåðèÿìè 0.5—1.5 ÷ ïðè
37 °C.
Ïîäãîòîâêó ïðåïàðàòîâ äëÿ ýëåêòðîííîé ìèêðîñêîïèè îñóùåñòâëÿëè ïî ñòàíäàðòíîé ìåòîäèêå (Ìèðîíîâ
è äð., 1994). Êëåòêè ôèêñèðîâàëè íà ñòåêëàõ â 2.5%-íîì
ðàñòâîðå ãëóòàðàëüäåãèäà íà ôîñôàòíîì áóôåðå (PBS) â
òå÷åíèå 60 ìèí ïðè êîìíàòíîé òåìïåðàòóðå. Ïîñëå ýòîãî
êëåòêè îòìûâàëè PBS è ïðîâîäèëè ïîñòôèêñàöèþ
1%-íûì ðàñòâîðîì îñìèåâîé êèñëîòû íà PBS â òå÷åíèå
30 ìèí ïðè êîìíàòíîé òåìïåðàòóðå. Äåãèäðàòàöèþ ïðîâîäèëè â ýòèëîâîì ñïèðòå âîçðàñòàþùèõ êîíöåíòðàöèé
(îò 30 % äî àáñîëþòíîãî) è àáñîëþòíîì àöåòîíå. Â ïðîöåññå äåãèäðàòàöèè êëåòêè ñíèìàëè ñî ñòåêîë ñ ïîìîùüþ
ñêðåáêà è çàëèâàëè â ñìåñü ýïîíà è àðàëäèòà. Èç ïîëèìåðèçîâàííûõ áëîêîâ íà ìèêðîòîìå LKB III (Øâåöèÿ) ïîëó÷àëè óëüòðàòîíêèå ñðåçû, êîòîðûå êîíòðàñòèðîâàëè ïî
7 ìèí â öèòðàòå ñâèíöà è óðàíèë-àöåòàòå. Óëüòðàòîíêèå
ñðåçû ïðîñìàòðèâàëè è ôîòîãðàôèðîâàëè â ýëåêòðîííîì
ìèêðîñêîïå Carl Zeiss Libra 120 (Ãåðìàíèÿ).
Ðåçóëüòàòû è îáñóæäåíèå
Ýëåêòðîííî-ìèêðîñêîïè÷åñêèå êàðòèíû êëåòîê HeLa M
è áàêòåðèé S. grimesii, ïîëó÷åííûå â íàñòîÿùåé ðàáîòå,
íå îòëè÷àëèñü îò àíàëîãè÷íûõ êàðòèí, ìíîãîêðàòíî îïèñàííûõ â ëèòåðàòóðå (Erlandson, deHarve, 1971; Boatman
et al., 1976; Balczon, 2001; Santos et al., 2008; Bozhokina
et al., 2011).
Ðèñ. 1. Óëüòðàòîíêèå ñðåçû êîíòðîëüíûõ êëåòîê HeLa M, íå îáðàáîòàííûõ (à) è ïðåäîáðàáîòàííûõ (á) N-àöåòèëöèñòåèíîì.
Îáîçíà÷åíèÿ êî âñåì ðèñóíêàì: ì — ìèòîõîíäðèè, ìâ — ìèêðîâîðñèíêè, ìò — ìèêðîòðóáî÷êè, ïì — ïëàçìàòè÷åñêàÿ ìåìáðàíà, ýð — ýíäîïëàçìàòè÷åñêèé ðåòèêóëóì. Ñòðåëêàìè ïîêàçàí êîðòèêàëüíûé àêòèí.
Ìàñøòàáíûé îòðåçîê — 1 ìêì.
Ïðè àíàëèçå ýëåêòðîííî-ìèêðîñêîïè÷åñêèõ ôîòîãðàôèé îñíîâíîå âíèìàíèå óäåëÿëîñü ïîâåðõíîñòíûì ñòðóêòóðàì êëåòîê, èíôèöèðîâàííûõ áàêòåðèÿìè.  àïèêàëüíîé îáëàñòè èññëåäóåìûõ êëåòîê ÷åòêî âûÿâëÿëèñü
îñíîâíûå îðãàíîèäû è ñòðóêòóðíûå ýëåìåíòû: ïëàçìàòè÷åñêàÿ ìåìáðàíà (ðèñ. 1—4), ïðèìåìáðàííûé àêòèíîâûé
ñëîé (ðèñ. 1, 2), ìèòîõîíäðèè (ðèñ. 1), ýíäîïëàçìàòè÷åñêèé ðåòèêóëóì (ðèñ. 1, 3) è ìèêðîòðóáî÷êè (ðèñ. 1,
3—6).
Ïîëó÷åííûå ðåçóëüòàòû ïîêàçûâàþò, ÷òî äîáàâëåíèå
NAC â ðîñòîâóþ ñðåäó ñïîñîáñòâóåò ïîÿâëåíèþ ìíîãî÷èñëåííûõ âûðîñòîâ (âîðñèíîê) (ðèñ. 1). Ìíîãî÷èñëåííûå âîðñèíêè íàáëþäàþòñÿ è â ïðèñóòñòâèè áàêòåðèé,
åùå äî ñòàäèè ïåðâè÷íîãî êîíòàêòà (ðèñ. 2). Ïðè ñîâìåñòíîé èíêóáàöèè áàêòåðèé è êëåòîê HeLa M, âûðàùåííûõ â
ñðåäå áåç äîáàâëåíèÿ àíòèîêñèäàíòà, ïîâåðõíîñòü êëåòîê
ïðàêòè÷åñêè ëèøåíà âîðñèíîê (ðèñ. 2, à, á). Êëåòêè HeLa
M, îáðàáîòàííûå NAC, îòëè÷àþòñÿ îò êîíòðîëüíûõ êëåòîê áîëüøèì êîëè÷åñòâîì âûðîñòîâ (ðèñ. 2, â, ã). Âîçìîæíî, èìåííî ýòî ñïîñîáñòâóåò áîëåå àêòèâíîìó ïðîöåññó çàõâàòà áàêòåðèé HeLa M è, òàêèì îáðàçîì, ïîâûøàåò èíòåíñèâíîñòü èíâàçèè áàêòåðèé, ÷òî ñîãëàñóåòñÿ ñ
ðàíåå ïîëó÷åííûìè ðåçóëüòàòàìè êîëè÷åñòâåííîé îöåíêè èíâàçèè áàêòåðèé S. grimesii â êëåòêè, îáðàáîòàííûå
NAC (Bozhokina et al., 2013).
Âçàèìîäåéñòâèå áàêòåðèé ñ êëåòêàìè HeLa M íà÷èíàåòñÿ ñ îáðàçîâàíèÿ ïëîòíîãî êîíòàêòà (ðèñ. 3). Çàòåì
ìîæíî îáíàðóæèòü äâà âàðèàíòà ïðîíèêíîâåíèÿ áàêòå-
716
Å. Ñ. Áîæîêèíà è äð.
Ðèñ. 2. Íà÷àëüíàÿ ñòàäèÿ ñîâìåñòíîé èíêóáàöèè êëåòîê HeLa M ñ áàêòåðèÿìè Serratia grimesii.
à, á — êîíòðîëüíûå êëåòêè; â, ã — êëåòêè HeLa Ì, ïðåäîáðàáîòàííûå N-àöåòèëöèñòåèíîì, ÿ — ÿäðî.
ðèé â ýóêàðèîòè÷åñêóþ êëåòêó.  áîëüøèíñòâå ñëó÷àåâ
áàêòåðèè êàê áû ïðîäàâëèâàþò ïîâåðõíîñòü ýóêàðèîòè÷åñêîé êëåòêè, à çàòåì ïðîíèêàþò âíóòðü (ðèñ. 4, à, á), ÷òî
ñîîòâåòñòâóåò ìåõàíèçìó «çàñòåæêà-ìîëíèÿ». Òðèããåðíûé ìåõàíèçì ïðåäóñìàòðèâàåò ðåîðãàíèçàöèþ ïðèìåìáðàííîãî àêòèíà êëåòêè-õîçÿèíà â îòâåò íà âíåäðåíèå â
íåå áàêòåðèàëüíûõ ýôôåêòîðîâ. Âîçíèêàþùèå ïðè ïîëèìåðèçàöèè àêòèíà âûðîñòû çàõâàòûâàþò áàêòåðèþ, êîòîðàÿ ïðè ñëèÿíèè âûðîñòîâ îêàçûâàåòñÿ âíóòðè êëåòî÷íîé
âàêóîëè (ðèñ. 5, à, á). Êðîìå òîãî, ïîëó÷åííûå â äàííîé
ðàáîòå ýëåêòðîííî-ìèêðîñêîïè÷åñêèå êàðòèíû äàþò
îñíîâàíèå ñ÷èòàòü, ÷òî âîðñèíêè êëåòêè-õîçÿèíà ñïîñîáñòâóþò çàõâàòó áàêòåðèé (ðèñ. 2, â, ã). Ñëåäóåò îòìåòèòü,
÷òî ïðèíöèïèàëüíîé ðàçíèöû ìåæäó âûðîñòàìè è âîðñèíêàìè íåò. Òå è äðóãèå ïðåäñòàâëÿþò ñîáîé àêòèíîâûå
ôèáðèëëû, îêðóæåííûå ïëàçìàòè÷åñêîé ìåìáðàíîé. Ðàçíèöà ëèøü â òîì, ÷òî âîðñèíêè ñóùåñòâóþò äî êîíòàêòà
êëåòêè-õîçÿèíà ñ áàêòåðèåé, à âûðîñòû îáðàçóþòñÿ â ðåçóëüòàòå êîíòàêòà áàêòåðèè ñ êëåòêîé-õîçÿèíîì.
Êàêîå-òî âðåìÿ áàêòåðèè îñòàþòñÿ âíóòðè âàêóîëåé,
÷òî íàáëþäàåòñÿ ïðè âçàèìîäåéñòâèè áàêòåðèé ñ êëåòêàìè, êîòîðûå ðîñëè â ïðèñóòñòâèè àíòèîêñèäàíòà èëè â
ñðåäå áåç àíòèîêñèäàíòà (ðèñ. 5, á; 6, a). Â äàëüíåéøåì
áàêòåðèè, êàê ïðàâèëî, ðàñòâîðÿþò ìåìáðàíó âàêóîëè, â
êîòîðîé îíè íàõîäÿòñÿ, è âûõîäÿò â öèòîïëàçìó (ðèñ. 6,
á), ÷òî ïðèâîäèò ê ïîñòåïåííîé ãèáåëè ïîâðåæäåííîé
êëåòêè (Efremova et al., 2001).
Íåçàâèñèìî îò ìåõàíèçìà ïðîíèêíîâåíèÿ, ïåðåìåùåíèå áàêòåðèé âíóòðè êëåòîê, ïî äàííûì ðÿäà èññëåäîâàíèé (Tilney, Portnoy, 1989; Theriot et al., 1992; Theriot,
2000), îñóùåñòâëÿåòñÿ ñ ïîìîùüþ àêòèíîâîãî «õâîñòà»,
ñôîðìèðîâàííîãî èç àêòèíà èíôèöèðîâàííîé êëåòêè. Îäíàêî àêòèíîâûå õâîñòû âûÿâëÿþòñÿ äîñòàòî÷íî ðåäêî
(Åôðåìîâà è äð., 1998). Âìåñòå ñ òåì ìû äîâîëüíî ÷àñòî
íàáëþäàëè âíóòðèêëåòî÷íûå áàêòåðèè, îêðóæåííûå
áîëüøèì êîëè÷åñòâîì ìèêðîòðóáî÷åê (ðèñ. 6). Èç äàííûõ ëèòåðàòóðû èçâåñòíî, ÷òî ýòè îðãàíîèäû íå òîëüêî
îñóùåñòâëÿþò òðàíñïîðò ðÿäà êëåòî÷íûõ îðãàíîèäîâ
(Granger et al., 2014; Hancock, 2014), íî è ñïîñîáñòâóþò
èíâàçèè íåêîòîðûõ áàêòåðèé (Yoshida et al., 2002; Dhakal,
Mulvey, 2009; Haglund, Welch, 2011; Croinin, Backert,
2012). Ýòè íàáëþäåíèÿ óêàçûâàþò íà âîçìîæíîå ó÷àñòèå
ìèêðîòðóáî÷åê â èíâàçèè è (èëè) âî âíóòðèêëåòî÷íîì
òðàíñïîðòå áàêòåðèé S. grimesii.
Ýëåêòðîííî-ìèêðîñêîïè÷åñêèé àíàëèç ïðîíèêíîâåíèÿ óñëîâíî-ïàòîãåííûõ áàêòåðèé
Ðèñ. 3. Ïåðâîíà÷àëüíûå êîíòàêòû áàêòåðèé Serratia grimesii ñ
êëåòêàìè HeLa Ì.
Òàêèì îáðàçîì, ïðåäâàðèòåëüíàÿ îáðàáîòêà êëåòîê
HeLa M N-àöåòèëöèñòåèíîì, èñïîëüçîâàííàÿ â íàñòîÿùåé ðàáîòå äëÿ óâåëè÷åíèÿ ýôôåêòèâíîñòè èíâàçèè,
ïîçâîëèëà âûÿâèòü çíà÷èòåëüíîå êîëè÷åñòâî áàêòåðèé, íàõîäÿùèõñÿ íà ðàííèõ ñòàäèÿõ ïðîíèêíîâåíèÿ
â êëåòêó-õîçÿèíà. Àíàëîãè÷íûå ñòàäèè áûëè âûÿâëåíû
íà ïðåïàðàòàõ êëåòîê, íå îáðàáîòàííûõ N-àöåòèëöèñòåèíîì (íå ïðåäñòàâëåíî). Îäíàêî ïîëó÷åííûå ðåçóëüòàòû íå ïîçâîëÿþò îäíîçíà÷íî èäåíòèôèöèðîâàòü ìåõàíèçì âçàèìîäåéñòâèÿ áàêòåðèé ñ ýóêàðèîòè÷åñêîé êëåòêîé, ÷òî ñîãëàñóåòñÿ ñ àíàëèçîì äàííûõ, îïèñàííûõ
â ëèòåðàòóðå (Croinin, Backert, 2012). Ñèòóàöèÿ îñëîæíÿåòñÿ åùå è òåì, ÷òî íåêîòîðûå áàêòåðèè èñïîëüçóþò äëÿ
èíâàçèè îáà ìåõàíèçìà, õîòÿ îäèí èç íèõ, ïî-âèäèìîìó,
ÿâëÿåòñÿ ïðåèìóùåñòâåííûì (Rosselin et al., 2010; Croinin, Backert, 2012; Grepinet et al., 2012; Velge et al., 2012;
Boumart et al., 2014). Ïîýòîìó äëÿ ïîíèìàíèÿ ìåõàíèçìà
èíâàçèè íåîáõîäèìî òàêæå âûÿâëåíèå áàêòåðèàëüíûõ è êëåòî÷íûõ ôàêòîðîâ, ó÷àñòâóþùèõ âî âçàèìîäåéñòâèè.
Èçâåñòíî, ÷òî â ìåõàíèçìå «çàñòåæêà-ìîëíèÿ» áàêòåðèàëüíûé àäãåçèí àêòèâèðóåò èíâàçèþ, âçàèìîäåéñòâóÿ ñ
Å-êàäãåðèíîì êëåòêè-õîçÿèíà (Lecuit et al., 2000; Hamon
et al., 2006; Pizarro-Cerda et al., 2012), à êàñêàä ðåàêöèé,
ïðèâîäÿùèõ ê çàõâàòó áàêòåðèè, ðåãóëèðóåòñÿ Src-êèíàçîé (Pizarro-Cerda et al., 2012). Ðàíåå ìû ïîêàçàëè, ÷òî
÷óâñòâèòåëüíîñòü êëåòîê HeLa Ì ê èíâàçèè áàêòåðèé
S. grimesii êîððåëèðóåò ñ óñèëåíèåì ýêñïðåññèè ãåíîâ
717
Ðèñ. 4. Ïðîíèêíîâåíèå áàêòåðèé Serratia grimesii â êëåòêè
HeLa Ì ïî ìåõàíèçìó «çàñòåæêà-ìîëíèÿ» ÷åðåç ðåöåïòîðîïîñðåäîâàííûé ýíäîöèòîç.
à — íà÷àëüíûé ýòàï; á — ïîñëåäóþùèå ýòàïû âõîæäåíèÿ áàêòåðèé. êî —
êëàòðèíîâîå îáðàìëåíèå, ýÿ — ýíäîöèòîçíàÿ ÿìêà.
Å-êàäãåðèíà è b-êàòåíèíà è óâåëè÷åíèåì êîëè÷åñòâà
Å-êàäãåðèíà â êëåòî÷íûõ ýêñòðàêòàõ (Bozhokina et al.,
2013, 2015). Êðîìå òîãî, ïî íàøèì ïðåäâàðèòåëüíûì äàííûì, èíãèáèðîâàíèå Src-êèíàçû çíà÷èòåëüíî óìåíüøàåò
ýôôåêòèâíîñòü èíâàçèè S. grimesii â êëåòêè HeLa Ì. Ñîïîñòàâëåíèå ðåçóëüòàòîâ, ïðåäñòàâëåííûõ â íàñòîÿùåé
ðàáîòå, ñ ýòèìè äàííûìè ïîçâîëÿåò ïðåäïîëîæèòü, ÷òî
ïðîíèêíîâåíèå áàêòåðèé S. grimesii â êëåòêè ýóêàðèîò
ïðîèñõîäèò, ïî êðàéíåé ìåðå ÷àñòè÷íî, ñ ïîìîùüþ ìåõàíèçìà «çàñòåæêà-ìîëíèÿ», âêëþ÷àþùåãî â ñåáÿ Å-êàäãåðèí-êàòåíèíîâûé ïóòü.
Ðàáîòà âûïîëíåíà ïðè ôèíàíñîâîé ïîääåðæêå Ðîññèéñêîãî ôîíäà ôóíäàìåíòàëüíûõ èññëåäîâàíèé (ïðîåêòû 14-04-00316 è 13-04-00101) è ïðîãðàììû ïðåçèäèóìà ÐÀÍ «Ìîëåêóëÿðíàÿ è êëåòî÷íàÿ áèîëîãèÿ»
(¹ 2211).
Ñïèñîê ëèòåðàòóðû
Ãàìàëåé È. À., Åôðåìîâà Ò. Í., Êèðïè÷íèêîâà Ê. Ì., Êîìèññàð÷èê ß. Þ., Êåâåð, Ë. Â., Ïîëîçîâ Þ. Â., Õàéòëèíà Ñ. Þ.
2006. Óìåíüøåíèå ÷óâñòâèòåëüíîñòè òðàíñôîðìèðîâàííûõ
êëåòîê 3Ò3-SV40, îáðàáîòàííûõ N-àöåòèëöèñòåèíîì, ê áàêòå-
718
Å. Ñ. Áîæîêèíà è äð.
Ðèñ. 5. Ïðîíèêíîâåíèå áàêòåðèé Serratia grimesii â êëåòêè
HeLa Ì ïî «òðèãåðíîìó» ìåõàíèçìó ñ ïîìîùüþ èíäóöèðîâàííûõ âûðîñòîâ êëåòî÷íîé ïîâåðõíîñòè, çàõâàòûâàþùèõ
áàêòåðèþ.
Ðèñ. 6. Âíóòðèêëåòî÷íàÿ ëîêàëèçàöèÿ áàêòåðèé Serratia grimesii â âàêóîëÿõ (à) è ëåæàùèõ ñâîáîäíî â öèòîïëàçìå (á).
à — íà÷àëüíûé ýòàï; á — ïîñëåäóþùèå ýòàïû âõîæäåíèÿ áàêòåðèé.
àô — àêòèíîâûå ôèëàìåíòû, âì — âàêóîëÿðíàÿ ìåìáðàíà, âûð — âûðîñòû (ìåìáðàíû).
Balczon R. 2001. Overexpression of cyclin A in human HeLa
cells induces detachment of kinetochores and spindle pole/centrosome overproduction. Chromosoma. 110 : 381—392.
Boatman E., Cartwright F., Kenny G. 1976. Morphology,
morphometry and electron microscopy of HeLa cells infected with
bovine Mycoplasma. Cell Tissue Res. 170 : 1—16.
Boumart Z., Velge P., Wiedemann A. 2014. Multiple invasion
mechanisms and different intracellular behaviors: a new vision of
Salmonella-host cell interaction FEMS Microbiol. Lett. 2014. doi:
10.1111/1574—6968.12614.
Bozhokina E. S., Khaitlina S. Yu., Adam T. 2008. Grimelysin, a
novel metalloprotease from Serratia grimesii, is similar to ECP32.
Biochem. Biophys. Res. Commun. 367 : 888—892.
Bozhokina E., Khaitlina S., Gamaley I. 2015. Dihydrolipoic
but not alpha-lipoic acid affects susceptibility of eukaryotic cells to
bacterial invasion. Biochem. Biophys. Res. Commun. 460 : 697—
702.
Bozhokina E. S., Tsaplina O. A., Efremova T. N., Kever L. V.,
Demidyuk I. V., Kostrov S. V., Adam T., Komissarchik Y. Y., Khaitlina S. Y. 2011. Bacterial invasion of eukaryotic cells can be mediated by actin-hydrolyzing metalloproteases grimelysin and protealysin. Cell Biol. Intern. 34 : 111—118.
Bozhokina E. S., Vakhromova E. N., Gamaley I. A., Khaitlina S. Yu. 2013. N-acetylcysteine increases susceptibility of HeLa
cells to bacterial invasion. J. Cell. Biochem. 114 : 1568—1574.
Carayol N., Tran Van Nhieu G. 2013. Tips and tricks about
Shigella invasion of epithelial cells. Curr. Opin. Microbiol. 16 :
32—37.
Cossart P., Sansonetti P. J. 2004. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science. 304 : 242—248.
ðèàëüíîé èíâàçèè. Áþë. ýêñïåðèì. áèîë. ìåä. 142 (1) : 101—
105. (Gamaley I. A., Efremova T. N., Kirpichnikova K. M., Komissarchik Ya. Yu., Kever L. V., Polozov Yu. V., Khaitlina S. Yu. 2006.
Decreased sensitivity of transformed 3T3-SV40 cells treated with
N-acetylcysteine to bacterial invasion. Bull. Exp. Biol. Med. 142
(1) : 90—93.)
Åôðåìîâà Ò. Í., Êèðïè÷íèêîâà Ê. Ì., Õàéòëèíà Ñ. Þ., Ãàìàëåé È. À. 2004. Âëèÿíèå àíòèîêñèäàíòîâ íà ñòðóêòóðó àêòèíîâîãî öèòîñêåëåòà â ôèáðîáëàñòàõ 3T3 è 3T3-SV40. Öèòîëîãèÿ 46 (5) : 395—403. (Efremova T. N., Kirpichnikova K. M.,
Khaìtlina S. Yu., Gamaley I. A. 2004. Antioxidants-induced rearrangements of actin cytoskeleton in 3T3 and 3T3-SV40 fibroblasts.
Tsitologiya. 46 (5) : 395—403.)
Åôðåìîâà Ò. Í., Ýíäåð Í. À., Áðóäíàÿ Ì. Ñ., Êîìèññàð÷èê ß. Þ., Õàéòëèíà Ñ. Þ., 1998. Ðåîðãàíèçàöèÿ àêòèíîâûõ
ìèêðîôèëàìåíòîâ â êëåòêàõ HEP-2 â ðåçóëüòàòå èíâàçèè áàêòåðèé Escherichia coli À2. Öèòîëîãèÿ 40 (6) : 524—528. (Efremova T. N., Ender N. A., Brudnaya M. S., Komissarchik Ya. Yu., Khaitlina S. Yu. 1998. (Invasion of Escherichia coli A2 induces reorganization of actin microfilaments in Hep-2 cells. Tsitologia. 40 (6) :
524—528).)
Ìèðîíîâ À. À., Êîìèññàð÷èê ß. Þ., Ìèðîíîâ Â. À. 1994.
Ìåòîäû ýëåêòðîííîé ìèêðîñêîïèè â áèîëîãèè è ìåäèöèíå.
Ñïá.: Íàóêà. 400 ñ. (Mironov A. A., Komissarchik Ya.Yu., Mironov V. A. 1994. Methods of electron microscopy in biology and
medicine. Spb.: Nauka. 400 p.)
Îáîçíà÷åíèÿ òå æå, ÷òî è íà ðèñ. 1 è ðèñ. 5.
Ýëåêòðîííî-ìèêðîñêîïè÷åñêèé àíàëèç ïðîíèêíîâåíèÿ óñëîâíî-ïàòîãåííûõ áàêòåðèé
Cróinín T. Ó., Backert S. 2012. Host epithelial cell invasion by
Campylobacter jejuni: trigger or zipper mechanism? Front Cell Infect Microbiol. 2:25. doi: 10.3389/fcimb.2012.00025. eCollection.
Dhakal B. K., Mulvey M. A. 2009. Uropathogenic Escherichia
coli invades host cells via an HDAC6-modulated microtubule-dependent pathway. J. Biol. Chem. 284 : 446—454.
Efremova T., Ender Í., Brudnaja M., Komissarchik Y. Khaitlina S. 2001. Specific invasion of transformed cells by Escherichia
coli A2 strain. Cell Biol. Intern. 25 : 257—261.
Erlandson A. R., deHarve E. 1971. The ultrastructure of synchronized HeLa cells. J. Cell Sci. 8: 353—397.
Gamaley I., Efremova T., Kirpichnikova K., Kever L., Komissarchik Y., Polozov Y., Khaitlina S. 2006. N-acetylcystein-induced
changes in susceptibility of transformed eukaryotic cells to bacterial invasion. Cell Biol. Intern. 30 : 319—325.
Granger E., McNee G., Allan V., Woodman P. 2014. The role
of the cytoskeleton and molecular motors in endosomal dynamics.
Semin Cell Dev. Biol. 31 : 20—29.
Grepinet O., Namdari F., Roche S. M., Rossigno A.,
Virlogeux-Payant I. 2012. Multiplicity of Salmonella entry mechanisms, a new paradigm for Salmonella pathogenesis. Microbiol.
Open. 1 : 243—258.
Grimont F., Grimont P. A. D. 2006. The genus Serratia. Prokaryotes. 6 : 219—244.
Haglund C. M., Welch M. D. 2011. Pathogens and polymers:
microbe-host interactions illuminate the cytoskeleton J. Cell Biol.
195 : 7—17.
Hamon M., Bierne H., Cossart P. 2006. Listeria monocytogenes: a multifaceted model. Nat. Rev. Microbiol. 4 : 423—434.
Hancock W. O. 2014. Bidirectional cargo transport: moving
beyond tug of war. Nat. Rev. Mol. Cell Biol. 15 : 615—628.
Khaitlina S. Yu., Collins J. H., Kusnetsova I. M., Pershina V. P., Synakevich I. G., Turoverov K. K., Usmanova A. M. 1991.
Physico-chemical properties of actin cleaved with bacterial protease from E. coli A2 strain. FEBS Lett. 279 : 49—51.
Lee J. H., Park H. J., Park Y. H. 2014. Molecular mechanisms
of host cytoskeletal rearrangements by Shigella invasins. Int. J.
Mol. Sci. 15 : 18 253—18 266.
Lecuit M., Hurme R., Pizarro-Cerda J., Ohayon H., Geiger B.,
Cossart P. 2000. A role for A- and B-catenins in bacterial uptake.
Proc. Nat. Acad. Sci. USA. 97 : 10 008—10 013.
Navarro-Garcia F., Serapio-Palacios A., Ugalde-Silva P.,
Tapia-Pastrana G., Chavez-Dueñas L. 2013. Actin cytoskeleton manipulation by effector proteins secreted by diarrheagenic Escherichia
coli pathotypes. BioMed Res. Intern. Vol. 2013. Article ID 374395.
Pizarro-Cerda J., Kuhbacher A., Cossart P. 2012. Entry of
Listeria monocytogenes in mammalian epithelial cells: an updated
view. Cold Spring Harb. Perspect. Med. 2 : a010009.
719
Rosselin M., Virlogeux-Payant I., Roy C., Bottreau E., Sizaret P.-Y., Mijouin L., Germon P., Caron E., Velge P., Wiedemann A.
2010. Rck of Salmonella enterica, subspecies enterica serovar Enteritidis, mediates Zipper-like internalization. Cell Res. 20 : 647—
664.
Rutherford S. T., Bassler B. L. 2012. Bacterial quorum sensing:
its role in virulence and possibilities for its control. Cold Spring
Harb. Perspect. Med. 2 : a012427.
Sansonetti P. J. 1998. Molecular and cellular mechanisms of
invasion of the intestinal barrier by enteric pathogens. The paradigm of Shigella. Folia Microbiol. 43 : 239—246.
Santos R. I. M., Rodrigues A. H., Silva M. L., Mortara R. A.,
Rossi M. A., Jamur M. C., Oliver C., Arruda E. 2008. Oropouche
virus entry into HeLa cells involves clathrin and requires endosomal acidification. Virus Res. 138 : 139—143.
Theriot J. A. 2000. The polymerization motor. Traffic. 1 : 19—28.
Theriot J. A., Mitchison T. J., Tilney L. G., Portnoy D. A.
1992. The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization. Nature. 357 :
257—260.
Tilney L. G., Portnoy D. A. 1989. Actin filaments and the
growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol. 109 : 1597—1608.
Valencia-Gallardo C. M., Carayol N., Tran Van Nhieu G.
2015. Cytoskeletal mechanics during Shigella invasion and dissemination in epithelial cells. Cell. Microbiol. 17 : 174—182.
Velge P., Bottreau E., Van-Langendonck N., Kaeffer B. 1997.
Cell proliferation enhances entry of Listeria monocytogenes into
intestinal epithelial cells by two proliferation-dependent entry pathways. J. Med. Microbiol. 46 : 681—692.
Velge P., Kaeffer B., Bottreau E., Van Langendonck N. 1995.
The loss of contact inhibition and anchorage-dependent growth are
key steps in the acquisition of Listeria monocytogenes susceptibility phenotype by non-phagocytic cells. Biol. Cell. 85 : 55—66.
Velge P., Wiedemann A., Rosselin M., Abed N., Boumart Z.,
Chausse A. M., Grepinet O., Namdari F., Roche S. M., Rossignol A.,Virlogeux-Payant I. 2012. Multiplicity of Salmonella entry
mechanisms, a new paradigm for Salmonella pathogenesis. Microbiol. Open. 1 : 243—258.
Yoshida S., Katayama E., Kuwae A., Mimuro H., Suzuki T., Sasakawa C. 2002. Shigella deliver an effector protein to trigger host
microtubule destabilization, which promotes Rac1 activity and efficient bacterial internalization. EMBO J. 21 : 2923—2935.
Ïîñòóïèëà 6 VII 2015
ENTRY OF FACULTATIVE PATHOGEN SERRATIA GRIMESII INTO HELA CELLS. ELECTRON MICROSCOPIC ANALYSIS
E. S. Bozhokina, L. V. Kever, Ya. Yu. Komissarchik, S. Yu. Khaitlina,1 T. N. Efremova
Institute of Cytology RAS, St. Petersburg, 194064;
1 e-mail: skhspb@gmail.com
Facultative pathogens Serratia grimesii are able to invade eukaryotic cells where they have been found in
vacuoles and free in the cytoplasm (Efremova et al., 2001; Bozhokina et al., 2011). However, efficiency of this
invasion is low, and the mechanisms of the invasion related to the initial steps of the process are not known. In
the present study, we have increased the invasion efficiency by incubation of HeLa cells with N-acetylcysteine
(NAC) preceding the infection. In the NAC-pretreated cells, two modes of S. grimesii to enter HeLa cells were
observed. In the most cases, the penetration of S. grimesii into the cell was consistent with the «zipper mechanism», involving specific interaction of bacterial invasin with a host cell surface receptor. However, in some cases, bacteria were trapped by membrane ruffling probably produced by injected bacterial proteins that trigger
the bacterial uptake process, as described in the «trigger mechanism». Further elucidation of bacterial and cellular factors involved in the bacteria-host cell interaction should clarify whether two different mechanisms or a
predominant one operate during S. grimesii invasion.
K e y w o r d s: bacterial invasion, N-acetylcysteine, Serratia grimesii, invasion steps.
Download