2009 ÖÈÒÎËÎÃÈß Ò î ì 51, ¹ 4 ÍÀÑËÅÄÎÂÀÍÈÅ ÝÏÈÃÅÍÅÒÈ×ÅÑÊÈÕ ÌÎÄÈÔÈÊÀÖÈÉ ÕÐÎÌÀÒÈÍÀ, ÍÀÏÐÀÂËßÅÌÎÅ ÐÍÊ © Í. Â. Òîìèëèí Èíñòèòóò öèòîëîãèè ÐÀÍ, Ñàíêò-Ïåòåðáóðã; ýëåêòðîííûé àäðåñ: nvtom@mail.ru Í. Â. Òîìèëèí Ðàññìàòðèâàþòñÿ íîâûå ëèòåðàòóðíûå äàííûå î ìåõàíèçìå íàñëåäîâàíèÿ ðåïðåññèâíûõ ýïèãåíåòè÷åñêèõ ìîäèôèêàöèé õðîìàòèíà, ãèñòîíîâ è ÄÍÊ, êîòîðûå ñâèäåòåëüñòâóþò î òîì, ÷òî ýòè ìîäèôèêàöèè íàïðàâëÿþòñÿ ÐÍÊ. ÐÍÊ ñ÷èòûâàåòñÿ ñ áîëüøèíñòâà ó÷àñòêîâ ãåíîìà, è òîãäà, êîãäà îíà ôîðìèðóåò äóïëåêñíûå ñòðóêòóðû çà ñ÷åò ïåðåêðûâàþùåéñÿ òðàíñêðèïöèè èëè çà ñ÷åò äîñòðàèâàíèÿ ÐÍÊ-çàâèñèìîé ÐÍÊ-ïîëèìåðàçîé, îáðàçóåòñÿ ãåòåðîõðîìàòèí. Ìèòîòè÷åñêîå ôîñôîðèëèðîâàíèå Ser-10 â ãèñòîíå Í3 ñòèìóëèðóåò òðàíñêðèïöèþ ãåòåðîõðîìàòèíà è îáåñïå÷èâàåò åãî âîññòàíîâëåíèå â ñëåäóþùåì öèêëå ïóòåì ÐÍÊ-èíòåðôåðåíöèè. Íàñëåäîâàíèå ýïèãåíåòè÷åñêèõ ìîäèôèêàöèé õðîìàòèíà, íàïðàâëÿåìîå ÐÍÊ Ê ë þ ÷ å â û å ñ ë î â à: ýïèãåíåòèêà, ìîäèôèêàöèÿ ãèñòîíîâ, õðîìàòèí, ìåòèëèðîâàíèå ÄÍÊ. Ãåíåòè÷åñêàÿ èíôîðìàöèÿ â æèâûõ îðãàíèçìàõ ïåðåäàåòñÿ â ðÿäó ïîêîëåíèé ñ ïîìîùüþ ïîëóêîíñåðâàòèâíîé ìàòðè÷íîé ðåïëèêàöèè ÄÍÊ âî âðåìÿ ñèíòåòè÷åñêîé (S) ôàçû êëåòî÷íîãî öèêëà. Êðîìå òîãî, ïðè êàæäîì äåëåíèè â äî÷åðíèå êëåòêè ïåðåäàåòñÿ áîëüøîé îáúåì ýïèãåíåòè÷åñêîé èíôîðìàöèè, ïðåæäå âñåãî èíôîðìàöèè îá óðîâíå òðàíñêðèïöèîííîé àêòèâíîñòè êàæäîãî ãåíà. Ðåïëèêàöèÿ ÄÍÊ îñíîâàíà íà êîìïëåìåíòàðíûõ âçàèìîäåéñòâèÿõ íóêëåîòèäîâ è ñâîéñòâàõ ÄÍÊ-ïîëèìåðàç, îäíàêî îáùèé ìåõàíèçì íàñëåäîâàíèÿ ýïèãåíåòè÷åñêèõ ìîäèôèêàöèé äî ïîñëåäíåãî âðåìåíè îñòàâàëñÿ íåèçâåñòíûì. Ïðåäïîëàãàëîñü, ÷òî òàêîå íàñëåäîâàíèå âîçìîæíî áëàãîäàðÿ ïàññèâíîé ïåðåäà÷å ïðè êëåòî÷íûõ äåëåíèÿõ êàêèõ-òî ðàñòâîðèìûõ ôàêòîðîâ íóêëåîïëàçìû è öèòîïëàçìû, íàïðèìåð óíèêàëüíîãî íàáîðà áåëêîâûõ êîìïëåêñîâ, ñïîñîáíûõ ðåãóëèðîâàòü òðàíñêðèïöèþ. Ýòè êîìïëåêñû, îäíàêî, áûñòðî òåðÿþòñÿ ïðè äåëåíèÿõ, èõ íåîáõîäèìî âîññòàíàâëèâàòü ïóòåì ðåñèíòåçà è ñàìîñáîðêè, è îñòàåòñÿ íåÿñíûì, êàê òàêèå êîìïëåêñû ìîãóò óçíàâàòü òå ìíîãî÷èñëåííûå ó÷àñòêè ãåíîìà, êîòîðûå íóæíî ðåïðåññèðîâàòü èëè àêòèâèðîâàòü. Ðàíåå íà ðàñòåíèÿõ áûëî ïîêàçàíî, ÷òî íåêîòîðûå ýïèãåíåòè÷åñêèå ìîäèôèêàöèè (ïàðàìóòàöèè) ïåðåäàþòñÿ íåìåíäåëåâñêèì ñïîñîáîì â íåñêîëüêèõ ïîêîëåíèÿõ ÷åðåç êëåòêè çàðîäûøåâîãî ïóòè (Brink, 1958). Íåäàâíî ýòî ÿâëåíèå áûëî ïîäòâåðæäåíî íà ìûøàõ è óñòàíîâëåíî, ÷òî îíî îïîñðåäîâàíî ÐÍÊ (Rassoulzadegan et al., 2006). Áûëî òàêæå ïîêàçàíî, ÷òî äëÿ ïåðåäà÷è ïàðàìóòàöèé ó êóêóðóçû òðåáóåòñÿ ÐÍÊ-çàâèñèìàÿ ÐÍÊ-ïîëèìåðàçà, ò. å. ðåïëèêàöèÿ ÐÍÊ (Alleman et al., 2006). Òàêèì îáðàçîì, íàñëåäîâàíèå ýïèãåíåòè÷åñêèõ ìîäèôèêàöèé â ðÿäó ïîêîëåíèé ó ðàñòåíèé è æèâîòíûõ âîçìîæíî ÷åðåç ÐÍÊ, à íå ÄÍÊ èëè áåëîê (Cuzin et al., 2008).  îòëè÷èå îò áåëêîâûõ êîìïëåêñîâ äàæå êîðîòêèå ÐÍÊ (äëèíîé 16—30 íóêëåîòèäîâ) ñïîñîáíû óçíàâàòü çà ñ÷åò êîìïëåìåíòàðíîñòè ëþáûå ñïåöèôè÷åñêèå ó÷àñòè ãåíîìà è ìîãóò îáåñïå÷èâàòü èõ àäðåñíóþ ðåïðåññèþ. Íåòðàíñëèðóåìàÿ äëèííàÿ (15 êá) ÐÍÊ, ó÷àñòâóþùàÿ â ïîääåðæàíèè íåàêòèâíîé X-õðîìîñîìû (Xist RNA), áûëà èäåíòèôèöèðîâàíà ó ìûøåé â 1991 ã. (Brockdorff et al., 1991, 1992). Ãåí ýòîé ÐÍÊ íàõîäèòñÿ â ëîêóñå íà X-õðîìîñîìå (Xic), îò êîòîðîãî ðàñïðîñòðàíÿåòñÿ âîëíà ðåïðåññèè òðàíñêðèïöèè â èíàêòèâèðóþùåéñÿ êîïèè X-õðîìîñîìû â ðàííåì ýìáðèîãåíåçå ó ñàìîê. Ýòà âîëíà âîçíèêàåò áëàãîäàðÿ ïîñòåïåííîìó íàêîïëåíèþ Xist RNA ïî îáå ñòîðîíû îò Xic, çàòåì íåàêòèâíîñòü îäíîé X-õðîìîñîìû ïîääåðæèâàåòñÿ êëîíàëüíî âî âñåõ ïîñëåäóþùèõ äåëåíèÿõ ñîìàòè÷åñêèõ êëåòîê (Heard, 2005). Äîïîëíèòåëüíàÿ Xist ÐÍÊ, íåîáõîäèìàÿ äëÿ ïîääåðæàíèÿ ðåïðåññèè, ñèíòåçèðóåòñÿ, î÷åâèäíî, ïðè êàæäîì äåëåíèè ñîìàòè÷åñêèõ êëåòîê.  2008 ã. ïîêàçàíî, ÷òî âûêëþ÷åíèå àïïàðàòà èíòåðôåðåíöèè ÐÍÊ (èíàêòèâàöèÿ ãåíà DICER, ñì. íèæå) ïîäàâëÿåò ñèíòåç Xist ÐÍÊ íà àêòèâíîé X-õðîìîñîìå è íàêîïëåíèå Xist ÐÍÊ íà íåàêòèâíîé X (Ogawa et al., 2008). Ðîëü êîðîòêîé (ìàëîé) ÐÍÊ â ðåãóëÿöèè ãåííîé ýêñïðåññèè áûëà âïåðâûå ïîêàçàíà íà ìîäåëè ãåíà Lin-4 Caenorhabditis elegans â ëàáîðàòîðèè Â. Àìáðîñà â 1993 ã. (Lee et al., 1993). Íàïðàâëÿåìîå ÐÍÊ ìåòèëèðîâàíèå ÄÍÊ áûëî îòêðûòî â 1994 ã. íà ðàñòåíèÿõ, èíôèöèðîâàííûõ âèðîèäàìè (Wassenegger et al., 1994). Ñïåöèôè÷åñêîå èíãèáèðîâàíèå òðàíñêðèïöèè èñêóññòâåííî ââåäåííîé äóïëåêñíîé ÐÍÊ áûëî âïåðâûå îáíàðóæåíî â îïûòàõ íà C. elegans â 1998 ã. (Fire et al., 1998), ýòà ðàáîòà áûëà íåäàâíî óäîñòîåíà Íîáåëåâñêîé ïðåìèè. Çàòåì ïîñëåäîâàëè ìíîãî÷èñëåííûå ðàáîòû íà ðàçëè÷íûõ îáúåêòàõ, êîòîðûå âûÿâèëè ñïåöèôè÷åñêèå êîíñåðâàòèâíûå ãåíû è áåëêîâûå êîìïëåêñû, íåîáõîäèìûå äëÿ ïðîöåññèíãà äóïëåêñíîé ÐÍÊ è îáðàçîâàíèÿ ìàëûõ èíòåðôåðèðóþùèõ ÐÍÊ (siRNA): ãåíû DICER, ARGONAUTE, à òàêæå êîìïëåêñû RISC (RNA Induced Silencing Complex) è RITS (RNA Induced Transcription Silencing) (ñì. îáçîðû: Bernstein et al., 2001; Hannon, 2002; Baulcombe, 2004; Lippman, Martienssen, 2004). Êîìïëåêñû RISC âûçûâàþò ðàñïàä mÐÍÊ èëè 291 292 Í. Â. Òîìèëèí òîðìîæåíèå åå òðàíñëÿöèè, à êîìïëåêñû RITS íåîáõîäèìû äëÿ ïîäàâëåíèÿ òðàíñêðèïöèè è ïîääåðæàíèÿ ãåòåðîõðîìàòèíà (Lippman, Martienssen, 2004; Matzke, Matzke, 2004). Íà äðîçîôèëå èíäóöèðóåìîå äóïëåêñíîé ÐÍÊ ãëóøåíèå òðàíñêðèïöèè òàíäåìíûõ ïîâòîðîâ è òðàíñïîçîíîâ â êëåòêàõ çàðîäûøåâîãî ïóòè áûëî îòêðûòî â ëàáîðàòîðèè Â. À. Ãâîçäåâà (Aravin et al., 2001). Äàëüíåéøåå èññëåäîâàíèå ýòîãî ÿâëåíèÿ ïîêàçàëî, ÷òî îíî çàâèñèò îò ìàëûõ ÐÍÊ, ñâÿçûâàþùèõñÿ ñ áåëêîì PIWI (ðàçíîâèäíîñòü áåëêà ARGONAUTE) è åãî ãîìîëîãàìè â êëåòêàõ ìëåêîïèòàþùèõ MILI è MIWI (Aravin et al., 2004, 2007a, 2007b). Ýòè æå áåëêè íàïðàâëÿþò ìåòèëèðîâàíèå ÄÍÊ ðåòðîòðàíñïîçîíîâ â ìóæñêèõ ãîíàäàõ ó ìûøåé (Kuramochi-Miyazawa et al., 2008), íî îíè, ïî-âèäèìîìó, íå ðàáîòàþò â ñîìàòè÷åñêèõ êëåòêàõ æèâîòíûõ, êîòîðûå èñïîëüçóþò äðóãîé ïóòü ÐÍÊ-èíòåðôåðåíöèè, çàâèñèìûé îò áåëêà DICER (Obbard, Finnegan, 2008). ÐÍÊ, âçàèìîäåéñòâóþùèå ñ áåëêîì PIWI, ñ÷èòûâàþòñÿ ñ îïðåäåëåííûõ êëàñòåðîâ â ãåíîìå, ñîäåðæàùèõ ðåòðîòðàíñïîçîíû, è çàòåì ïðîöåññèðóþòñÿ â îäíîòÿæåâóþ ÐÍÊ äëèíîé 23—29 íóêëåîòèäîâ, íî íåÿñíî, ìîæåò ëè ñ ïîìîùüþ PIWI ïðîöåññèðîâàòüñÿ ëþáàÿ äóïëåêñíàÿ ÐÍÊ. Ðàçëè÷íûå ïóòè è ìåõàíèçìû ÐÍÊ-èíòåðôåðåíöèè ðàññìîòðåíû íåäàâíî â îáçîðå Ðÿçàíñêîãî è Ãâîçäåâà (Ryazansky, Gvozdev, 2007). Äîëãîå âðåìÿ ñ÷èòàëîñü, ÷òî ýñïðåññèðóåòñÿ ëèøü î÷åíü íåáîëüøàÿ äîëÿ (<5 %) ãåíîìîâ âûñøèõ ýóêàðèîò, ñîîòâåòñòâóþùàÿ êîäèðóþùèì ïîñëåäîâàòåëüíîñòÿì áåëêîâ è íåêîòîðûõ âàæíûõ ÐÍÊ, îäíàêî â ïîñëåäíèå ãîäû âûÿñíåíî, ÷òî â êëåòêàõ æèâîòíûõ òðàíñêðèáèðóåòñÿ íå ìåíåå 70 % ãåíîìà, ïðè÷åì èìååòñÿ î÷åíü ìíîãî òðàíñêðèïòîâ ñ îáåèõ êîìïëåìåíòàðíûõ íèòåé (Carninci et al., 2005; Kapranov et al., 2007). Èíòåíñèâíîñòü òðàíñêðèïöèè ðàçíûõ ó÷àñòêîâ ãåíîìà, êîíå÷íî, ñóùåñòâåííî âàðüèðóåò, íî ïðè íåêîòîðûõ óñëîâèÿõ òðàíñêðèáèðóåòñÿ äàæå êîìïàêòíûé öåíòðîìåðíûé õðîìàòèí. Ïîñêîëüêó ãëàâíûì ïåðâè÷íûì ïðîäóêòîì ãåíîìîâ ÿâëÿåòñÿ ÐÍÊ, äëÿ áèîëîãèè ðàçâèòèÿ ïðåäëàãàåòñÿ íîâàÿ ïàðàäèãìà, ñîñòîÿùàÿ â òîì, ÷òî íåêîäèðóþùàÿ ÐÍÊ èìååò ðåãóëÿòîðíûå ôóíêöèè (Mattick, 2007) è ÷òî ÐÍÊ êîíòðîëèðóåò ýïèãåíåòè÷åñêèå ìîäèôèêàöèè ñîìàòè÷åñêèõ êëåòîê, íà êîòîðûõ îñíîâàíû âñå îíòîãåíåçû ìíîãîêëåòî÷íûõ îðãàíèçìîâ. Çíà÷èòåëüíóþ ÷àñòü «íåêîäèðóþùåé» ÄÍÊ ñîñòàâëÿþò ðåòðîýëåìåíòû, êîòîðûå èãðàþò âàæíóþ ðîëü â ðåãóëÿöèè ýêñïðåññèè ãåíîâ (Goodier, Kazazian, 2008; Tomilin, 2008) è, òàêèì îáðàçîì, ìîãóò ñóùåñòâåííî âëèÿòü íà ñîñòàâ êîäèðóþùèõ è íåêîäèðóþùèõ ÐÍÊ â êëåòêå.  ñîìàòè÷åñêèõ êëåòêàõ â õðîìàòèíå èìåþòñÿ êàê àêòèâíî òðàíñêðèáèðóþùèåñÿ äîìåíû (ñîñòàâëÿþùèå ýóõðîìàòèí), òàê è íåàêòèâíûå äîìåíû (ãåòåðîõðîìàòèí), â êîòîðûõ òðàíñêðèïöèÿ ïîäàâëåíà, ïðè÷åì õàðàêòåðíàÿ äëÿ äàííîãî òèïà êëåòîê ìîçàèêà àêòèâíûõ è íåàêòèâíûõ äîìåíîâ ïåðåäàåòñÿ âî âðåìÿ êëåòî÷íûõ äåëåíèé.  òðàíñêðèïöèîííî íåàêòèâíûõ äîìåíàõ ÄÍÊ, êàê ïðàâèëî, ìåòèëèðîâàíà ïî öèòîçèíó â ïàðàõ CpG (Vaniushin, 2006), à ãèñòîí H3 â õðîìàòèíå ìåòèëèðîâàí ïî îñòàòêó Lys-9 èëè Lys-27. Ïðè äåëåíèÿõ ñîõðàíÿåòñÿ êàê êàðòèíà ìåòèëèðîâàíèÿ ÄÍÊ, òàê è êàðòèíà îáðàòèìûõ ïîñòòðàíñëÿöèîííûõ ìîäèôèêàöèé ãèñòîíîâ (Bradbury, 1992), ñîñòàâëÿþùàÿ òàê íàçûâàåìûé ãèñòîíîâûé êîä (Strahl, Allis, 2000; Jenuwein, Allis, 2001). Ñ÷èòàåòñÿ, ÷òî êàðòèíà ìåòèëèðîâàíèÿ ÄÍÊ âîñïðîèçâîäèòñÿ áëàãîäàðÿ äîïîëíèòåëüíîìó ìåòèëèðîâàíèþ âî âðåìÿ S-ôàçû ïîëóìåòèëèðîâàííîé ÄÍÊ-ñïåöèôè÷åñêîé «ïîääåðæèâàþùåé» ÄÍÊ-ìåòèëàçîé òèïà DNMT1, êîòîðàÿ èìååòñÿ â ñîìàòè÷åñêèõ è ïîëîâûõ êëåòêàõ (Bestor, 2000). Ýòà ìåòèëàçà, îäíàêî, ìîæåò ìîäèôèöèðîâàòü è íåìåòèëèðîâàííóþ ÄÍÊ è èìååò ëèøü íåáîëüøîå ïðåäïî÷òåíèå ê ïîëóìåòèëèðîâàííîé ÄÍÊ (Yoder et al., 1997). Îñòàåòñÿ íåÿñíûì, ïî÷åìó DNMT1 íå ìîäèôèöèðóåò â ñîìàòè÷åñêèõ êëåòêàõ òðàíñêðèïöèîííî àêòèâíûå äîìåíû õðîìàòèíà de novo. Âåðîÿòíî, äîïîëíèòåëüíûå ðåãóëÿòîðíûå ôàêòîðû, à òàêæå ñòðóêòóðà õðîìàòèíà èãðàþò ãëàâíóþ ðîëü â îïðåäåëåíèè ìèøåíåé äëÿ DNMT1, äàæå ïîëóìåòèëèðîâàííîé ÄÍÊ. Òàêèì ôàêòîðîì ìîæåò áûòü, íàïðèìåð, áåëîê UHRF 1, êîòîðûé «âûâîðà÷èâàåò» 5-ìåòèëöèòîçèí èç äóïëåêñíîé ïîëóìåòèëèðîâàííîé ÄÍÊ (Arita et al., 2008; Avvakumov et al., 2008; Hashimoto et al., 2008). Ïðåäïîëàãàåòñÿ, ÷òî âàæíóþ ðîëü ñðåäè óêàçàííûõ ôàêòîðîâ èãðàþò òàêæå ìîäèôèêàöèè õðîìàòèíà, íàïðàâëÿåìûå ÐÍÊ (Kloc, Martienssen, 2008). ×òî êàñàåòñÿ ìåõàíèçìà âîñïðîèçâåäåíèÿ êàðòèíû ìîäèôèêàöèé ãèñòîíîâ, òî ðàññìàòðèâàþòñÿ äâå ãèïîòåçû. Ñîãëàñíî ïåðâîé èç íèõ, ìîäèôèêàöèè ãèñòîíîâ íåïîñðåäñòâåííî íàïðàâëÿþòñÿ ìåòèëèðîâàíèåì ÄÍÊ ïóòåì ïðèâëå÷åíèÿ ãèñòîíìîäèôèöèðóþùèõ ôåðìåíòîâ. Ðåïðåññèâíîå ìåòèëèðîâàíèå ãèñòîíà H3 ïî Lys-9 âîñïðîèçâîäèòñÿ ïîñëå ïîääåðæèâàþùåãî CpG-ìåòèëèðîâàíèÿ ÄÍÊ ñðàçó ïîñëå åå ðåïëèêàöèè. Ýòî ïðîèñõîäèò ñ ïîìîùüþ ìåòèë-CpG-ñâÿçûâàþùåãî áåëêà MBD1, êîòîðûé ïðèâëåêàåò â ñàéòû ðåïëèêàöèè ãèñòîíìåòèëàçó SETDB1 (Sarraf, Stancheva, 2004), à òàêæå çà ñ÷åò ñïåöèôè÷åñêèõ áåëîê-áåëêîâûõ âçàèìîäåéñòâèé êîìïëåêñà PCNA— DNMT1 ñ ãèñòîíìåòèëàçîé G9a è ãèñòîíäåàöåòèëàçîé HDAC2, à òàêæå âçàèìîäåéñòâèé MBD1—HP1 ñ ãèñòîíìåòèëàçîé Suv39h1 (Groth et al., 2007). Ïðåäïîëàãàåòñÿ, ÷òî âûñîêàÿ êîíöåíòðàöèÿ â ðåïëèêàòèâíûõ ôîêóñàõ óêàçàííûõ ìåòèëàç àâòîìàòè÷åñêè âåäåò ê ìåòèëèðîâàíèþ Lys-9 â ãèñòîíå H3 (H3K9) è äåàöåòèëèðîâàíèþ äðóãèõ ãèñòîíîâ è ýòîò ïðîöåññ íàïðàâëÿåòñÿ ïîääåðæèâàþùèì ìåòèëèðîâàíèåì ÄÍÊ. MBD1 âçàèìîäåéñòâóåò òàêæå ñ áåëêàìè Ring1b è hPc2 ðåïðåññèâíîãî êîìïëåêñà Polycomb (Sakamoto et al., 2007) è ìîæåò ïîýòîìó íàïðàâëÿòü ìåòèëèðîâàíèå ãèñòîíà H3 ïî Lys-27 ñ ïîìîùüþ ãèñòîíìåòèëàçû EZH2, êîòîðàÿ ÿâëÿåòñÿ ñóáúåäèíèöåé óêàçàííîãî êîìïëåêñà. Èçëîæåííàÿ ãèïîòåçà, îäíàêî, íå ñîãëàñóåòñÿ ñ äàííûìè, ïîëó÷åííûìè íà ðàñòåíèÿõ è ôèëàìåíòîçíûõ ãðèáàõ, î òîì, ÷òî ìåòèëèðîâàíèå ÄÍÊ íàïðàâëÿåòñÿ ìåòèëèðîâàíèåì ãèñòîíîâ (Jackson et al., 2002; Tamaru et al., 2003). Ó ìûøåé èíàêòèâàöèÿ ãåíà ãèñòîíìåòèëòðàíñôåðàçû Suv39h, êîòîðàÿ ìåòèëèðóåò H3K9, ïîíèæàåò ìåòèëèðîâàíèå ïðèöåíòðîìåðíûõ ñàòåëëèòíûõ ÄÍÊ (Lehnertz et al., 2003). Âî âðåìÿ ýïèãåíåòè÷åñêîé èíàêòèâàöèè ãåíà îïóõîëåâîãî ñóïðåññîðà RASSF1A â êëåòêàõ ÷åëîâåêà â ïðîìîòîðå ýòîãî ãåíà âíà÷àëå ïðîèñõîäèò ìåòèëèðîâàíèå H3K9, à çàòåì óæå ìåòèëèðîâàíèå ÄÍÊ (Strunnikova et al., 2005). Ïî ïîñëåäíèì äàííûì, ïîëó÷åííûì íà ýìáðèîíàëüíûõ ñòâîëîâûõ êëåòêàõ ìëåêîïèòàþùèõ, ìåòèëèðîâàíèå H3K9 ìåòèëàçîé G9a è ìåòèëèðîâàíèå ÄÍÊ ïðîèñõîäèò íåçàâèñèìî äðóã îò äðóãà (Dong et al., 2008; Tachibana et al., 2008). Êðîìå òîãî, â íåêîòîðûõ ãåíîìàõ ïîçâîíî÷íûõ èìåþòñÿ äîâîëüíî ïðîòÿæåííûå ðàéîíû íåêîäèðóþùåé ÄÍÊ, íå ñîäåðæàùèå ïàð CpG, êîòîðûå íå ìîãóò áûòü ìåòèëèðîâàíû âîîáùå. Ê íèì îòíîñèòñÿ, íàïðèìåð, òåëîìåðíûé ãåòåðîõðîìàòèí, ñîñòîÿùèé èç òàíäåìíûõ ïîâòîðîâ (TTAGGG)n (Tomilin, 2008). Òàêèì îáðàçîì, ìåòèëèðîâàíèå ÄÍÊ íå ìîæåò íàïðàâëÿòü ýïèãåíåòè÷åñêèå ìîäèôèêàöèè ãèñòîíîâ. Âòîðàÿ ãèïîòåçà îòíîñèòåëüíî ìåõàíèçìà âîñïðîèçâåäåíèÿ êàðòèíû ðåïðåññèâíûõ ìîäèôèêàöèé ãèñòîíîâ âî âðåìÿ êëåòî÷íûõ äåëåíèé ñîñòîèò â òîì, ÷òî ìåòèëèðîâà- Íàñëåäîâàíèå ýïèãåíåòè÷åñêèõ ìîäèôèêàöèé õðîìàòèíà, íàïðàâëÿåìîå ÐÍÊ 293 Îáðàçîâàíèå ãåòåðîõðîìàòèíà áëàãîäàðÿ ïåðåêðûâàþùåéñÿ òðàíñêðèïöèè. íèå ãèñòîíà H3 ïî ëèçèíó-9 íàïðàâëÿåòñÿ òðàíñêðèïöèåé è siÐÍÊ. Áîëüøàÿ ðîëü ìàëûõ ÐÍÊ â ïîääåðæàíèè ãåòåðîõðîìàòèíà â äðîææàõ Schizosaccharomyces pombe áûëà óñòàíîâëåíà íåñêîëüêî ëåò íàçàä (Volpe et al., 2002; Cam et al., 2005; Martienssen et al., 2005), îäíàêî îñòàâàëîñü íåÿñíûì, êàê ðåãóëèðóåòñÿ òðàíñêðèïöèÿ ãåòåðîõðîìàòèíà, íåîáõîäèìàÿ äëÿ îáðàçîâàíèÿ ìàëûõ ÐÍÊ, â êëåòî÷íîì öèêëå.  2008 ã. îïóáëèêîâàíû äâå ñòàòüè, ãäå ýòîò âîïðîñ ïðîÿñíÿåòñÿ è ïðåäëàãàåòñÿ ìîäåëü íàñëåäîâàíèÿ ðåïðåññèâíûõ ìîäèôèêàöèé ãåòåðîõðîìàòèíà ïðè êëåòî÷íûõ äåëåíèÿõ äðîææåé S. pombe ñ ïîìîùüþ siÐÍÊ (Chen et al., 2008; Kloc et al., 2008). Êëþ÷åâîå ñîáûòèå ïðîèñõîäèò â ìèòîçå ïóòåì ôîñôîðèëèðîâàíèÿ Ser-10 â ãèñòîíå H3, ÷òî ïðèâîäèò ê ýëèìèíàöèè ãåòåðîõðîìàòèíîâîãî áåëêà Swi6 (HP1) è àêòèâàöèè òðàíñêðèïöèè â ôàçàõ G1 è ðàííåé S. Òðàíñêðèïòû ãåòåðîõðîìàòèíà íàêàïëèâàþòñÿ â S-ôàçå è ïðåâðàùàþòñÿ â ñïåöèôè÷åñêèå siÐÍÊ-êîìïëåêñû (RITS-êîìïëåêñû: RNA Induced Transcription Silencing), êîòîðûå èíäóöèðóþò äîïîëíèòåëüíîå ìåòèëèðîâàíèå Lys-9 â ãèñòîíå H3 (ïîñëå ðåïëèêàöèè) è ñâÿçûâàíèå áåëêà Swi6, ïîëíîñòüþ âîññòàíàâëèâàÿ òåì ñàìûì ãåòåðîõðîìàòèí â íîâîì öèêëå. Òàêèì îáðàçîì, ó S. pombe ãåòåðîõðîìàòèí ÷àñòè÷íî ðàçðóøàåòñÿ è âîññòàíàâëèâàåòñÿ ïðè êàæäîì êëåòî÷íîì äåëåíèè ñ ïîìîùüþ ÐÍÊ-èíòåðôåðåíöèè. Ýòà ñõåìà ðàññìàòðèâàåòñÿ êàê ìîäåëü âîññòàíîâëåíèÿ ìîäèôèêàöèé ãèñòîíîâ â êëåòî÷íîì öèêëå, êîòîðûå íàïðàâëÿþò îáðàçîâàíèå ãåòåðîõðîìàòèíà (Thon, 2008), è äàæå êàê îáùàÿ ìîäåëü ýïèãåíåòè÷åñêîãî íàñëåäîâàíèÿ ó ýóêàðèîò, íàïðàâëÿåìîãî ÐÍÊ-èíòåðôåðåíöèåé (Kloc, Martienssen, 2008). Íàñêîëüêî îïðàâäàííà òàêàÿ òî÷êà çðåíèÿ? Ìîæíî ñ÷èòàòü, ÷òî ôîñôîðèëèðîâàíèå ãèñòîíà H3 è ýëèìèíàöèÿ â ìèòîçå íå ÿâëÿþòñÿ ñïåöèôè÷åñêèìè äëÿ öåíòðîìåðíîãî ãåòåðîõðîìàòèíà S. pombe: ïîêàçàíî, ÷òî ìèòîòè÷åñêàÿ ýëèìèíàöèÿ âñåõ òðåõ ôîðì áåëêà HP1 (àëüôà, áåòà è ãàììà) ïðîèñõîäèò è â êëåòêàõ ìûøåé, ïðè÷åì âî âðåìÿ ìèòîçà â õðîìîñîìàõ îñòàåòñÿ òðèìåòèëèðîâàííûé H3K9, ñîõðàíÿþùèé ðåïðåññîðíóþ ìàðêèðîâêó ãåòåðîõðîìàòèíà (Fischle et al., 2005; Hirota et al., 2005) è, âåðîÿòíî, îòâåòñòâåííûé çà èçâåñòíûå Ñ-áàíäû â ìèòîòè÷åñêèõ õðîìîñîìàõ.  êëåòêàõ ìëåêîïèòàþùèõ ïèê òðàíñêðèïöèè ïåðèöåíòðè÷åñêîãî ãåòåðîõðîìàòèíà îáíàðóæåí â ðàííåé S-ôàçå êëåòî÷íîãî öèêëà, îäíàêî áåëîê HP1 îñòàåòñÿ â ýòîò ïåðèîä ñâÿçàííûì ñ ãåòåðîõðîìàòèíîì (Lu, Gilbert, 2008). Ìûøèíûé ãåòåðîõðîìàòèí òðàíñêðèáèðóåòñÿ è â ìèòîçå, êîãäà HP1 óäàëÿåòñÿ áëàãîäàðÿ ôîñôîðèëèðîâàíèþ H3-Ser-10 (Fischle et al., 2005), íî êîðîòêèå ÐÍÊ, êîìïëåìåíòàðíûå ãåòåðîõðîìàòèíîâûì ïîâòîðàì, à òàêæå RITS-êîìïëåêñû ïîêà íå èäåíòèôèöèðîâàíû. Òðàíñêðèïöèÿ ãåòåðîõðîìàòèíà ïðîèñõîäèò âî âðåìÿ G1- è ðàííåé S-ôàçû, íî îáðàçîâàíèå ñïåöèôè÷åñêèõ siÐÍÊ çàâèñèò îò òîãî, ôîðìèðóåòñÿ ëè äóïëåêñíàÿ ÐÍÊ, íåîáõîäèìàÿ äëÿ ñîçðåâàíèÿ êîìïëåêñîâ RITS. Ôîðìèðîâàíèå òàêîé ÐÍÊ âîçìîæíî ëèáî ïðè íàëè÷èè â ÐÍÊ èíâåðèðîâàííûõ ïîâòîðîâ, ëèáî ïðè âñòðå÷íîé òðàíñêðèïöèè îáåèõ êîìïëåìåíòàðíûõ íèòåé, ëèáî ïóòåì äîñòðàèâàíèÿ âòîðîé êîìïëåìåíòàðíîé íèòè ÐÍÊ ñ ïîìîùüþ êîìïëåêñà, ñîäåðæàùåãî ÐÍÊ-çàâèñèìóþ ÐÍÊïîëèìåðàçó (RDRC). Ó äðîææåé S. pombe è ó ðàñòåíèé òàêàÿ ÐÍÊ-ïîëèìåðàçà èìååòñÿ, îíà íåîáõîäèìà äëÿ îáðàçîâàíèÿ öåíòðîìåðíîãî ãåòåðîõðîìàòèíà (Iida et al., 2008), îäíàêî â êëåòêàõ æèâîòíûõ RDRC íå îáíàðóæåíà è äóïëåêñíûå ÐÍÊ ìîãóò ôîðìèðîâàòüñÿ, ïî-âèäèìîìó, òîëüêî çà ñ÷åò ïåðåêðûâàþùèõñÿ òðàíñêðèïòîâ èëè ïðè íàëè÷èè â ýòèõ òðàíñêðèïòàõ èíâåðòèðîâàííûõ ïîâòîðîâ. Î÷åâèäíî, ÷òî âûñîêîàêòèâíûå ãåíû, â êîòîðûõ òðàíñêðèáèðóåòñÿ òîëüêî îäíà íèòü ÄÍÊ, íå ìîãóò ïðîäóöèðîâàòü äóïëåêñíûå ÐÍÊ, îäíàêî â äîìåíàõ, â êîòîðûõ èíòåí- 294 Í. Â. Òîìèëèí ñèâíîñòü ñìûñëîâîé òðàíñêðèïöèè ñîïîñòàâèìà ñ èíòåíñèâíîñòüþ àíòèñìûñëîâîé òðàíñêðèïöèè, äóïëåêñíûå ÐÍÊ ìîãóò âîçíèêàòü. Äóïëåêñíàÿ ÐÍÊ, îáðàçîâàíèå êîìïëåêñîâ RITS è íåöåíòðîìåðíîãî ãåòåðîõðîìàòèíà â ôàçå G1 öèêëà ïóòåì ÐÍÊ-èíòåðôåðåíöèè áûëè îáíàðóæåíû ïðè àíàëèçå êîíâåðãåíòíîé òðàíñêðèïöèè ñîñåäíèõ ãåíîâ ó S. pombe (Gullerova, Proudfoot, 2008). Ïî-âèäèìîìó, íå òîëüêî öåíòðîìåðíûå òðàíñêðèïòû, íî è äðóãèå òðàíñêðèïòû, ñïîñîáíûå îáðàçîâûâàòü äóïëåêñíóþ ÐÍÊ, ìîãóò èíäóöèðîâàòü ÐÍÊ-èíòåðôåðåíöèþ ó S. pombe. Ó æèâîòíûõ èäåíòèôèöèðîâàíî ìíîãî êîíâåðãåíòíûõ êîäèðóþùèõ è íåêîäèðóþùèõ òðàíñêðèïòîâ, êîòîðûå ìîãóò ôîðìèðîâàòü äóïëåêñíóþ ÐÍÊ è êîìïëåêñû RITS.  áàçå äàííûõ ANTICODE (ïî àäðåñó: www.anticode.org) èìååòñÿ áîëåå 10 000 ïàð ïåðåêðûâàþùèõñÿ òðàíñêðèïòîâ èç êëåòîê ÷åëîâåêà. Ñîîòâåòñòâóþùèå siÐÍÊ ìîãóò äàâàòü ñóùåñòâåííûé âêëàä â ýïèãåíåòè÷åñêóþ ðåãóëÿöèþ ãåííîé ýêñïðåññèè è âîñïðîèçâåäåíèå êàðòèíû ýêñïðåññèè ïðè êëåòî÷íûõ äåëåíèÿõ.  2008 ã. áûë èäåíòèôèöèðîâàí íîâûé êëàññ ýíäîãåííûõ siÐÍÊ, ïîäàâëÿþùèõ òðàíñêðèïöèþ òðàíñïîçîíîâ â ñîìàòè÷åñêèõ êëåòêàõ äðîçîôèëû (Obbard, Finnegan, 2008). Ýòè 3S-ìåòèëèðîâàííûå ÐÍÊ äëèíîé 21 íóêëåîòèä îêàçàëèñü êîìïëåìåíòàðíûìè òðàíñïîçîíàìè è íåêîòîðûì äðóãèì ëîêóñàì, âêëþ÷àÿ åñòåñòâåííûå àíòèñìûñëîâûå òðàíñêðèïòû (Okamura et al., 2008), à òàêæå äëèííûå èíâåðòèðîâàííûå (fold-back) ïîñëåäîâàòåëüíîñòè, à èõ ïðîöåññèíã çàâèñåë îò ïðîäóêòîâ ãåíîâ Dicer 2 (Dcr2) è Argonaute 2 (Ago2).  ýòèõ ìàëûõ ÐÍÊ îáíàðóæåíû ïðèçíàêè ðåäàêòèðîâàíèÿ (Chung et al., 2008; Kawamura et al., 2008) è ñäåëàíî ïðåäïîëîæåíèå î òîì, ÷òî îíè íóæíû äëÿ ïîääåðæàíèÿ ãåòåðîõðîìàòèíà â ñîìàòè÷åñêèõ êëåòêàõ (Kawamura et al., 2008). Ïîêà íåÿñíî, ðàáîòàþò ëè àíàëîãè÷íûå ìàëûå ÐÍÊ â ñîìàòè÷åñêèõ êëåòêàõ ìëåêîïèòàþùèõ, îäíàêî åñòü óêàçàíèÿ íà òî, ÷òî ÐÍÊ, ñ÷èòûâàþùàÿñÿ ñ íåêîòîðûõ ðåòðîýëåìåíòîâ ìëåêîïèòàþùèõ, íàïðèìåð èíâåðòèðîâàííûõ Alu-ïîâòîðîâ, ëîêàëèçîâàííûõ â 3S-UTR-ðàéîíàõ èÐÍÊ, ïîäâåðãàåòñÿ èíòåíñèâíîìó ðåäàêòèðîâàíèþ, ñîñòîÿùåìó â ôåðìåíòàòèâíîì ïðåâðàùåíèè àäåíîçèíà â èíîçèí, êîòîðûé ñïàðèâàåòñÿ, êàê ãóàíîçèí (Levanon et al., 2005). Ôóíêöèîíàëüíîå çíà÷åíèå òàêîãî ðåäàêòèðîâàíèÿ Alu-ÐÍÊ íå óñòàíîâëåíî, îäíàêî èíâåðòèðîâàííûå Alu â èíòðîíàõ ãåíîâ ðåäàêòèðóþòñÿ è âëèÿþò íà àëüòåðíàòèâíûé ñïëàéñèíã èÐÍÊ (Lev-Maor et al., 2008). Ñëåäîâàòåëüíî, îíè ìîãóò êîìïëåìåíòàðíî âçàèìîäåéñòâîâàòü â ñîñòàâå ïðå-èÐÍÊ è ðåãóëèðîâàòü àëüòåðíàòèâíûé ñïëàéñèíã. Ðåäàêòèðîâàíèå ÐÍÊ è ïîäàâëåíèå ãåííîé ýêñïðåññèè ïóòåì ÐÍÊ èíòåðôåðåíöèè êàê-òî ñâÿçàíû (Nishikura, 2006), îäíàêî íåÿñíî, ìîãóò ëè siÐÍÊ, êîìïëåìåíòàðíûå ðåòðîýëåìåíòàì ìëåêîïèòàþùèõ, ôîðìèðîâàòüñÿ çà ñ÷åò ïåðåêðûâàíèÿ ñìûñëîâîé è àíòèñìûñëîâîé òðàíñêðèïöèè. Âåðîÿòíîñòü òàêîãî ïåðåêðûâàíèÿ äîñòàòî÷íî âåëèêà, íî ïîêà äóïëåêñíûå ÐÍÊ ðåòðîýëåìåíòîâ â ñîìàòè÷åñêèõ êëåòêàõ íå èäåíòèôèöèðîâàíû. Íå èäåíòèôèöèðîâàíû òàêæå äóïëåêñíûå ÐÍÊ, ñ÷èòàííûå ñ òàíäåìíûõ ïîâòîðîâ «òåëîìåðíîãî» ãåòåðîõðîìàòèíà, èìåþùåãîñÿ ó íåêîòîðûõ âèäîâ ïîçâîíî÷íûõ, êîòîðûé äèíàìè÷åñêè ñâÿçûâàåò áåëîê TRF1 è, ïî-âèäèìîìó, òðàíñêðèáèðóåòñÿ íà íèçêîì óðîâíå (Smirnova et al., 2005; Svetlova et al., 2007) ïîäîáíî öåíòðîìåðíîìó ãåòåðîõðîìàòèíó. Ýêñïåðèìåíòû ñ èñêóññòâåííîé ýêñïðåññèåé èíòåðôåðèðóþùèõ ÐÍÊ íå äàþò îñíîâàíèÿ ïðåäïîëàãàòü, ÷òî êàêèå-òî ïîñëåäîâàòåëüíîñòè íå ìîãóò ïðîöåññèðîâàòüñÿ àïïàðàòîì ÐÍÊ-èíòåðôåðåíöèè. Ïî-âèäèìîìó, ëþáûå ÐÍÊ-äóïëåêñû ìîãóò òðàíñôîðìèðîâàòüñÿ â siÐÍÊ è âûçûâàòü ïîäàâëåíèå ýêñïðåññèè êîìïëåìåíòàðíûõ ãåííûõ ìèøåíåé ïóòåì èíòåðôåðåíöèè, à îáùèé êîíòðîëü îñóùåñòâëÿåòñÿ íà óðîâíå ðåãóëÿöèè àíòèñìûñëîâîé òðàíñêðèïöèè (ñì. ðèñóíîê).  ó÷àñòêàõ, ñîäåðæàùèõ àêòèâíûå ãåíû, àíòèñìûñëîâàÿ òðàíñêðèïöèÿ, î÷åâèäíî, äîëæíà áûòü ïîäàâëåíà, íàïðèìåð çà ñ÷åò ìóòàöèîííîé èíàêòèâàöèè ïîòåíöèàëüíûõ ïðîìîòîðîâ. Äðóãèì ýôôåêòèâíûì ñïîñîáîì ïîäàâëåíèÿ àíòèñìûñëîâîé òðàíñêðèïöèè ÿâëÿåòñÿ òàêæå åå ðàííÿÿ òåðìèíàöèÿ, êîòîðàÿ ìîæåò îñóùåñòâëÿòüñÿ ïóòåì èíñåðöèè îïðåäåëåííûõ ðåòðîýëåìåíòîâ â îäíîé îðèåíòàöèè. Ìîòèâ AATAAA (êîíñåíñóñíûé ñàéò ïîëèàäåíèëèðîâàíèÿ ÐÍÊ) ðàáîòàåò êàê òåðìèíàòîð òðàíñêðèïöèè, íî åãî àêòèâíîñòü ñèëüíî çàâèñèò îò îêðóæàþùèõ ïîñëåäîâàòåëüíîñòåé. Çàâèñèìàÿ îò îðèåíòàöèè òåðìèíàöèÿ òðàíñêðèïöèè ÐÍÊ-ïîëèìåðàçîé II ïîñëåäîâàòåëüíîñòüþ, ñîäåðæàùåé CCAAT-áîêñ, èçâåñòíà óæå äàâíî (Connelly, Manlet, 1989).  çàêëþ÷åíèå ìîæíî îòìåòèòü, ÷òî ïîêà åùå ïðåæäåâðåìåííî ïðèíèìàòü ïðåäëîæåííóþ äëÿ öåíòðîìåðíîãî ãåòåðîõðîìàòèíà S. pombe ìîäåëü (Kloc, Martienssen, 2008) êàê îáùóþ ìîäåëü ýïèãåíåòè÷åñêîãî íàñëåäîâàíèÿ. Âî-ïåðâûõ, äëÿ ìëåêîïèòàþùèõ íå óñòàíîâëåíî, êàê ðåãóëèðóþòñÿ àíòèñìûñëîâàÿ òðàíñêðèïöèÿ, îáðàçîâàíèå ìàëûõ ÐÍÊ è RITS-êîìïëåêñîâ â ñîìàòè÷åñêèõ êëåòêàõ. Âî-âòîðûõ, íåêîòîðûå òèïû ãåòåðîõðîìàòèíà ïîääåðæèâàþòñÿ áåç ó÷àñòèÿ ìåòèëèðîâàíèÿ H3K9 è ìåòèëèðîâàíèÿ ÄÍÊ. Â-òðåòüèõ, èìåþòñÿ äàííûå î òîì, ÷òî íå òîëüêî ÐÍÊ-èíòåðôåðåíöèÿ èãðàåò ðîëü ïðè ýïèãåíåòè÷åñêèõ ìîäèôèêàöèÿõ. Äàæå ó S. pombe èìåþòñÿ êàê çàâèñèìûå òàê è íå çàâèñèìûå îò ÐÍÊ-èíòåðôåðåíöèè ïóòè îáðàçîâàíèÿ ãåòåðîõðîìàòèíà (Buhler et al., 2007). Ìåòèëèðîâàíèå ÄÍÊ íå çàâèñèò îò ÐÍÊ-èíòåðôåðåíöèè ó íåéðîñïîðû (Freitag et al., 2004), õîòÿ îíî è íàïðàâëÿåòñÿ ìåòèëèðîâàíèåì ãèñòîíîâ (Tamaru et al., 2003). Íå çàâèñèìûå îò ÐÍÊ-èíòåðôåðåíöèè ïóòè ðåãóëÿöèè, îäíàêî ìîãóò âêëþ÷àòü â ñåáÿ äðóãèå ÐÍÊ-çàâèñèìûå ýëåìåíòû, íàïðèìåð ÄÍÊ- è ÐÍÊ-ñâÿçûâàþùèå áåëêè. Âîçìîæíî, êîíå÷íî, ÷òî ñóùåñòâóþò è íåçàâèñèìûå îò òðàíñêðèïöèè ïóòè ðåãóëÿöèè ãåííîé ýêñïðåññèè, îäíàêî â íàñòîÿùåå âðåìÿ íàèáîëåå àêòóàëüíûì ïðåäñòàâëÿåòñÿ èçó÷åíèå ãëîáàëüíîé ñàìîîðãàíèçàöèè ñìûñëîâîé è àíòèñìûñëîâîé òðàíñêðèïöèè â êëåòî÷íîì ÿäðå, ìåõàíèçìîâ åå èíèöèàöèè è òåðìèíàöèè. Ðàáîòà âûïîëíåíà ïðè ôèíàíñîâîé ïîääåðæêå ïðîãðàììû ïî ìîëåêóëÿðíîé è êëåòî÷íîé áèîëîãèè, à òàêæå Ðîññèéñêîãî ôîíäà ôóíäàìåíòàëüíûõ èññëåäîâàíèé (ïðîåêò 07-04-00311). Ñïèñîê ëèòåðàòóðû Alleman M., Sidorenko L., McGinnis K., Seshadri V., Dorweiler J. E., White J., Sikkink K., Chandler V. L. 2006. An RNA polymerase is required for paramutation in maize. Nature. 442 : 295—298. Aravin A. A., Bourc’his D. 2008. Small RNA guides for d novo DNA methylation in mammalian germ cells. Genes Develop. 22 : 970—975. Aravin A. A., Hannon G. J., Brennecke J. 2007a. The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science. 318 : 761—764. Aravin A. A., Klenov M. S., Vagin V. V., Bantignie F., Cavalli G., Gvozdev V. A. 2004. Dissection of a natural RNA silencing process in the Drosophila melanogaster germ line Mol. Cell. Biol. 24 : 6742—6750. Íàñëåäîâàíèå ýïèãåíåòè÷åñêèõ ìîäèôèêàöèé õðîìàòèíà, íàïðàâëÿåìîå ÐÍÊ Aravin A. A., Naumova N. M., Tulin A. V., Vagin V. V., Rozovsky Y. M., Gvozdev V. A. 2001. Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr. Biol. 11 : 1017—1027. Aravin A. A., Sachidanandam R., Girard A., Fejes-Toth K., Hannon G. J. 2007b. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science. 316 : 744—747. Arita K., Ariyoshi M., Tochio H., Kawamura Y., Shirakawa M. 2008. Recognition of hemimethylated DNA by the SRA protein UHRF1 by a base-flipping mechanism. Nature. 455 : 818—821. Avvakumov G. V., Walker J. R., Xue S., Li Y., Duan S., Bronner C., Arrowsmith C. H., Dhe-Paganon S. 2008. Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1. Nature. 455 : 822—825. Baulcombe D. 2004. RNA silencing in plants. Nature. 431 : 356—363. Bernstein E., Denli A. M., Hannon G. J. 2001. The rest is silence. RNA. 7 : 1509—1521. Bestor T. H. 2000. The DNA methyltransferases of mammals. Hum. Mol. Genet. 9 : 2395—2402. Bradbury E. M. 1992. Reversible histone modifications and the chromosome cell cycle. Bioessays. 14 : 9—16. Brink R. A. 1958. Paramutation at the R locus in maize. Cold Spring Harbor Symp. Quant. Biol. 23 : 379—391. Brockdorff N., Ashworth A., Kay G. F., Cooper P., Smith S., McCabe V. M., Norris D. P., Penny G. D., Patel D., Rastan S. 1991. Conservation of position and exclusive expression of mouse Xist from the inactive X chromosome. Nature. 351 : 329—331. Brockdorff N., Ashworth A., Kay G. F., McCabe V. M., Norris D. P., Cooper P. J., Swift S., Rastan S. 1992. The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell. 71 : 515— 526. Buhler M., Haas W., Gygi S. P., Moazed D. 2007. RNAi-dependent and -independent RNA turnover. Cell. 129 : 707—721. Cam H. P., Sugiyama T., Chen E. S., Chen X., FitzGerald P. C., Grewal S. I. 2005. Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nat. Genet. 37 : 809—819. Carninci P., Kasukawa T., Katayama S., Gough J., Frith M. C., Maeda N. et al. 2005. The transcriptional landscape of the mammalian genome. Science. 309 : 1559—1563. Chen E. S., Zhang K., Nicolas E., Cam H. P., Zofall M., Grewal S. I. 2008. Cell cycle control of centromeric repeat transcription and heterochromatin assembly. Nature. 451 : 734—737. Chung W. J., Okamura K., Martin R., Lai E. C. 2008. Endogenous RNA interference provides a somatic defense against Drosophila transposons. Curr. Biol. 18 : 795—802. Connelly S., Manley J. L. 1989. RNA polymerase II transcription termination is mediated specifically by protein binding to a CCAAT box sequence. Mol. Cell. Biol. 9 : 5254—5259. Cuzin F., Grandjean V., Rassoulzadegan M. 2008. Inherited variation at the epigenetic level: paramutation from the plant to the mouse. Curr. Opin. Genet. Develop. 18 : 93—196. Dong K. B., Maksakova I. A., Mohn F., Leung D., Appanah R., Lee S., Yang H. W., Lam L. L., Mager D. L., Schübeler D., Tachibana M., Shinkai Y., Lorincz M. C. 2008. DNA methylation in ES cells requires the lysine methyltransferase G9a but not its catalytic activity. EMBO J. Sep. 25. Fire A., Xu S., Montgomery M. K., Kostas S. A., Driver S. E., Mello C. C. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 391 : 806— 811. Fischle W., Tseng B. S., Dormann H. L., Ueberheide B. M., Garcia B. A., Shabanowitz J., Hunt D. F., Funabiki H., Allis C. D. 2005. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature. 438 : 1116—1122. Freitag M., Lee D. W., Kothe G. O., Pratt R. J., Aramayo R., Selker E. U. 2004. DNA methylation is independent of RNA interference in Neurospora. Science. 304 : 1939. Goodier J. L., Kazazian H. 2008. Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell. 135 : 23—35. 295 Groth A., Corpet A., Cook A. J., Roche D., Bartek J., Lukas J., Almouzni G. 2007. Regulation of replication fork progression through histone supply and dem and. Science. 318 : 1928— 1931. Gullerova M., Proudfoot N. J. 2008. Cohesin complex promotes transcriptional termination between convergent genes in S. pombe. Cell. 132 : 983—995. Hannon G. J. 2002. RNA interference. Nature. 418 : 244—251. Hashimoto H., Horton J. R., Zhang X., Bostick M., Jacobsen S. E., Cheng X. 2008. The SPA domain of UNRF1 flips 5-methylcytosine out of the DNA helix. Nature. 455 : 826—829. Heard E. 2005. Delving into the diversity of facultative heterochromatin: the epigenetics of the inactive X chromosome. Curr. Opin. Genet. Develop. 15 : 482—489. Hirota T., Lipp J. J., Toh B. H., Peters J. M. 2005. Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature. 438 : 1176—1180. Iida T., Nakayama J., Moazed D. 2008. siRNA-mediated heterochromatin establishment requires HP1 and is associated with antisense transcription. Mol. Cell. 31 : 178—189. Jackson J. P., Lindroth A. M., Cao X., Jacobsen S. E. 2002. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature. 416 : 556—560. Jenuwein T., Allis C. D. 2001. Translating the histone code. Science. 293 : 1074—1080. Kapranov P., Willingham A. T., Gingeras T. R. 2007. Genome-wide transcription and the implications for genomic organization. Nat. Rev. Genet. 8 : 413—423. Kawamura Y., Saito K., Kin T., Ono Y., Asai K., Sunohara T., Okada T. N., Siomi M. C., Siomi H. 2008. Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells. Nature. 453 : 793—797. Kloc A., Martienssen R. 2008. RNAi, heterochromatin and the cell cycle. Trends Genet. Sep. 6. Klos A., Zaratiegui M., Nora E., Martienssen R. 2008. RNA interference guides histone modification during the S phase of chromosomal replication. Curr. Biol. 18 : 490—495. Kuramochi-Miyagawa S., Watanabe T., Gotoh K., Totoki Y., Toyoda A., Ikawa M., Asada N., Kojima K., Yamaguchi Y., Ijiri T. W., Hata K., Li E., Matsuda Y., Kimura T., Okabe M., Sakaki Y., Sasaki H., Nakano T. 2008. DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes. Develop. 22 : 908—917. Lee R. C., Feinbaum R. L., Ambros V. 1993. The C. elegans heterocxhronic gene lin-4 encodes small RNAs with antisense complementary to lin-14. Cell. 75 : 843—854. Lehnertz B., Ueda Y., Derijck A. A., Braunschweig U., Perez-Burgos L., Kubicek S., Chen T., Li E., Jenuwein T., Peters A. H. 2003. Suv39h-mediated histone He lysine 9 methylation directs DNA methylation of major satellite repeats at pericentric heterochromatin. Curr. Biol. 13 : 1192—1200. Levanon K., Eisenberg E., Rechavi G., Levanon E. Y. 2005. Letter from the editor: Adenosine-toinosine RNA editing in Alu repeats in the human genome. EMBO Rep. 6 : 831—835. Ley-Maor G., Ram O., Kim E., Sela N., Goren A., Levanon E. Y., Ast G. 2008. Intronic Alus influence alternative splicing. PLoS Genet. 4 paper e1000204. Lippman Z., Martienssen R. 2004. The role of RNA interference in heterochromatic silencing. Nature. 431 : 364—370. Lu J., Gilbert D. M. 2008. Cell cycle regulated transcription of heterochromatin in mammals vs. fission yeast: functional conservation or coincidence? Cell Cycle. 7 : 1907—1910. Martienssen R. A., Zaratiegui M., Goto D. B. 2005. RNA interference and heterochromatin in the fission yeast Schizosaccharomyces pombe. Trends Genet. 21 : 450—456. Mattick J. S. 2007. A new paradigm for developmental biology. J. Exp. Biol. 210 : 1526—1547. Matzke M. A., Matzke A. J. 2004. Planting the seeds of a new paradigm. PLoS Biol. 2 paper E133. Nishikura K. 2006. Editor meets silencer: crosstalk between RNA editing and RNA interference. Nat. Rev. Mol. Cell. Biol. 7 : 919—931. 296 Í. Â. Òîìèëèí Obbard D. J., Finnegan D. J. 2008. RNA interference: endogenous siRNAs derived from transposable elements. Curr. Biol. 18 : R561—R563. Ogawa Y., Sun B. K., Lee J. T. 2008. Intersection of the RNA interference and X-inactivation pathways. Science. 320 : 1336—1341. Okamura K., Balla S., Martin R., Liu N., Lai E. C. 2008. Two distinct mechanisms generate endogenous siRNAs from bidirectional transcription in Drosophila melanogaster. Nat. Struct. Mol. Biol. 15 : 581—590. Rassoulzadegan M., Grandjean V., Gounon P., Vincent S., Gillot I., Cuzin F. 2006. RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature. 441 : 469—474. Ryazansky S. S., Gvozdev V. A. 2007. Small RNAs and cancerogenesis. Biochemistry (Mosc.). 73 : 514—527. Sakamoto Y., Watanabe S., Ichimura T., Kawasuji M., Koseki H., Baba H., Nakao M. 2007. Overlapping roles of the methylated DNA-binding protein MBD1 and polycomb groups proteins in transcriptional repression of HOXA genes and heterochromatin foci formation. J. Biol. Chem. 282 : 16 391—16 400. Sarraf S. A., Stancheva I. 2004. Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Mol. Cell. 15 : 595— 605. Smirnova A. N., Krutilina R. I., Tomilin N. V. 2005. Dynamic binding of the telomeric human protein TRF1 to intrachromosomal blocks (TTAGGG)n in living Chinese hamster cells depends on transcription. Mol. Biol. (Mosc.). 39 : 978—983. Strahl B. D., Allis C. D. 2000. The language of covalent histone modifications. Nature. 403 : 41—45. Strunnikova M., Schagdarsurengin U., Kehlen A., Garbe J. C., Stampfer M. R., Dammann R. 2005. Chromatin inactivation precedes de novo DNA methylation during the progressive epigenetic si- lencing of the RASSF1A promoter. Mol. Cell. Biol. 25 : 3923— 3933. Svetlova M. P., Solovjeva L. V., Smirnova A. N., Tomilin N. V. 2007. Long interstitial (TTAGGG)n arrays do not colocalize with repressive chromatin modification in Chinese hamster cells. Cell Biol. Int. 31 : 308—315. Tachibana M., Matsumura Y., Fukuda M., Kimura H., Shinkai Y. 2008. G9a/GLP complexes independently mediate H3K9 and DNA methylation ot silence transcription. EMBO J. Sep. 25. Tamaru H., Zhang X., McMillen D., Singh P. B., Nakayama J., Grewal S. I., Allis C. D., Cheng X., Selker E. U. 2003. Trimethylated lysine 9 of histone H3 is a mark for DNA methylation in Neurospora crassa. Nat. Genet. 34 : 75—79. Thon G. 2008. Histone modifications: cycling with chromosomal replication. Curr. Biol. 18 : R380—R382. Tomilin N. V. 2008. Regulation of mammalian gene expression by retroelements and non-coding tandem repeats. Bioessays. 303 : 338—348. Vaniushin B. F. 2006. DNA methylation and epigenetics. Genetika (Mosc.). 42 : 1186—1199. Volpe T. A., Kidner C., Hall I. M., Teng G., Grewal S. I., Martienssen R. A. 2002. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science. 297 : 1833—1837. Wassenegger M., Neimes S., Riedel L., Sanger H. L. 1994. RNA-directed de novo methylation of genomic sequences in plants. Cell. 76 : 567—576. Yoder J. A., Soman N. S., Verdine G. L., Bestor T. H. 1997. DNA (cytosine-5)-methyltransferases in mouse cells and tissues. Studies with a mechanism-based probe. J. Mol. Biol. 270 : 385—395. Ïîñòóïèëà 5 XI 2008 INHERITANCE OF RNA-DIRECTED EPIGENETIC MODIFICATIONS OF CHROMATIN N. V. Tomilin Institute of Cytology RAS, St. Petersburg; e-mail: nvtom@mail.ru Published data are reviewed on the mechanism of inheritance of repressive epigenetic modifications of chromatin, histone and DNA, which suggest that they depend on RNA. RNA is transcribed from most of genome compartments and when it forms duplex structures because of overlapping transcription or because of resynthesis by RNA-dependent RNA polymerase, heterochromatin is generated. Mitotic phosphorylation of Ser-10 in histone H3 stimulates transcription of heterochromatin and its recovery in the next cell cycle by RNA interference. K e y w o r d s: epigenetics, modifications of histones, chromatin, methylation of DNA.