Семенов В.А. Колебания современного климата, вызванные

advertisement
1 / 2015
E_' 551.582:551.588
? ?, ]>]
]?
>?
?
?Z – [
J] – .. $ 1,2)
1)
> &# $&! $. .X. )% ;,
, 119017, . X, ! ., . 3,
2)
> & ;,
, 119017, . X, $! ., . 29, vasemenov@mail.ru
. $ #$ ! $ $*
!% '$ $ $ * ""
$&! % $( #$ $!%
# $&. #! '$ #,
$ #$ $ $ #!
( !) !( $! (
1980. * '$ $! , ! $ ! ! #
$ $ * $ "$ $. C!, $! $ $ ( "$
$-$ $) #
$! #$ #$ $! 30 XX (, $* , # $, ! #! #! #$ * " $%
$ "" !% # $&.
. , ! $ $, #$.
OSCILLATIONS OF PRESENT-DAY CLIMATE ASSOCIATED WITH
FEEDBACKS IN ATMOSPHERE – ARCTIC ICE –OCEAN SYSTEM
V.A. Semenov 1,2)
1)
A.M. Obukhov Institute of Atmopsheric Physics, RAS,
3 Pyzhevsky, 119017, Moscow, Russia,
2) Institute
of Geography, RAS,
29 Staromonetny, 119017, Moscow, Russia, vasemenov@mail.ru
Summary. The impact of internal climate variability in the North Atlantic
232
1 / 2015
and the Arctic on global climate is studied using simulations with atmospheric
general circulation model coupled with mixed layer ocean model forced by
anomalous heat fluxes on the ocean-atmosphere interface. The results show that
internal long-term climate variability in the North Atlantic and Atlantic Sector
of the Arctic may have contributed a substantial part (about a half) to the
observed surface air temperature warming in the Northern Hemisphere since
1980s. An important role in this is played by the anomalous heat fluxes in the
Arctic that may be enhanced by positive feedback between oceanic heat inflow
and sea ice area in the Barents Sea. Taking into account the fact that modern climate models (in ensemble average) almost perfectly reproduce the observed
global temperature changes during the last 30 years of the 20th century as a
response to the anthropogenic forcing, the results imply a possibility of substantial overestimation of the models’ sensitivity to the increase of greenhouse gas
concentration in the atmosphere.
Keywords. Atlantic multidecadal oscillation, global climate models, natural
variability.
!
#$ $ ( ()
! $ 1° XX (. 1). !
$!$ # : #
40 , $ $$$ 1970. * $,
#( 0,7°. $$ $ , #! $! % XX ,
%. F$! $! ' ! $! $!$ #$$ !
# % !!. , ' $ ! !# #$ $, # $ "" ($( $ !) (., Dellworth et al., 2000; Semenov
et al., 2010). F # * ( # $, $ '#, %, !%, % $ $ $ # ( !% %) ( !
$ (Ottera et al., 2010; Booth et al., 2012) '$%, !%, #! ! $ . "$ $ $, (% $$
!% $% $ CMIP3 (Meehl et al.,
2007), ( # $, * !, ! &!, j !
XX (. 2). '$ % $ #$ $ !$ $ !% (%
(. 2).
233
1 / 2015
1 – (
) #
,
% GISS (Hansen et al., 1999).
>
< ; () #
(°%) GISS XXI XX () (°%/10 ) 20012010. ().
F$ #$, ! ! XX $ $ $ $ $, # #$ $! , " $ "" !% #, $% $ # $.
$!% #$ $!
#$ $ XXI
. L ! # $!% $ XXI !$ (Hansen et al., 1999) !( (* # # $!% !
XIX , $! # XXI 0,1° ( 0,05°). '% #$ (. 1) %# !$ %$ $ $* #$ , *$ !$ $ (0,55° $ 60°.(.).
# % $ $ !$ "!$ $$ #$
: #$! 2003, 2006 2010. ( $ $
2012. $ %!% % &% $). $ % $ %!% #$ $ ! # 234
1 / 2015
$($ * $& "" $&!
#$ !% (% (Petoukhov, Semenov, 2010; $ .,
2012).
2 – #
( °C) QQ
(
– CRUTEM3 (Brohan et al.,
2006)) – ( – , – ) (a) % () # (60°.. – 90°..).
;$ #$ ( () XXI , $! $ $$, (* , $ $ $!$ #$$ % !% (%. ! ' !!. #$!% $%#$ $ #$ $&
"" $ " ! (!
(Graversen et al., 2008) $ $ (Schlichtholz, 2011).
! ( #) $($ * , # ( XXI ( 2012.
$$$ (# !% 1978.).
C$( * , ,
# $!% % " . $, $ 2012. ! ! $$$ * $% , (% $ !!$ $$) % % . %
#!% " ( #$!% $$) #, $ !% " *% $% #$.
F$ #$, $ $ % * !:
235
1 / 2015
-
+ !% & % $ $ ?
$ #$ $! XXI ?
$ XXI $ $$, (?
$ * $% , $ ! ?
+ $ ""
!% # $&?
J+,"! &0!$ &!' "( ''!& !
"&'!&
) ! # '% $, $ #$ $ $! # $ * # (#-) ,
# $ "",
( % $ $( % ). L j !$, &# .
D! " $ (
$ 50-70 ) ! !% $!% # F # 150 , #!% $!% "% (Mann, Park, 1994; Schlesinger, Ramankutty 1994), $ "% % % ! (Mangini et al.,
2005). , ! !$ $, ! #$% $! % (F)) (Delworth, Mann, 2000). F #$ F)
#! $ !$ $ (D+)
$ "" (X)) (Schlesinger,
Ramankutty, 1994; Kerr, 2000). D+ #
F) (. 3), !! # .
# # $ #$ $!% '$ # $% #$ LL !% F ! , % D+, $ $ $$ # (Kravtsov, Spannagle, 2008; Ting et al.,
2009).
F$ #$, # " !%
$, #!% D+, %* ! $ #$. C & D+ $ ! *
! $ # 10-20 .
$ # D+ ! $ %
# $ F) .
'$ # '&& D+ # $ *
"" $&! (X)[) !$ $$ F)
236
1 / 2015
(., Sutton, Hodson, 2007). (Zhang et al., 2007) ! !
$ $ # $!% # $& (#!% D+) $ $ $&! .
; '$ ! ( , $!% # F).
3 – () % , +$[, % #
(°%, 50°.. –
10°..,40°.. – 60°..) #
(#>). () #
, $+5, % (°%, HadCRU3). % ( ) "
#> < %$ #>.
237
1 / 2015
> $!% !% " $&!, #!% '$$$ D+ XX #, $$ $!% , D+ $!$ $ $ , !$ #$ "$ $ (Semenov et al., 2010; $,
2010). ] $ #! #$$ " $ ,
!#!$ "$ . ;! $ $ ( # D+ " $ ($ 2008).
# '$% !% F) " $ LL (Rayner et al., 2003) #$ " $! $&, #! D+, % !%
#$: % % &#! LL $ $$$ 1940., ( % % &# 1970. % $ * &#. $ !
"! $* $ * "" $&! (X)[),
#* ! F) "" $
! . +$ , $ ! #! '$ (! $* $& $, $ !% &) ! #
NCEP (Kalnay et al., 1996) 1948. * $, ! !
, , (*
%.
)" #!% $ $ (70°#.. – 80°..), ! . 4, #! %( #!% $$$, ! %!
% % % $ '$$$ D+, !$ NCEP
(. 4), !$ X)[ ECHAM5 (. 4). ) $$$
# 40°.(. # *$ $$ F). D $ 70°.(. 80°.(., #! # #$$ , ! $$! # '$ #$
$ "$ $% #$ . $
, ! !$ '$ (. 4) %( '$$ $!$ "$ , $.
C $% # $ * $ $ . $ $ 40% ! $!% , #!% D+, $ * $( * % '$ $. ) # , $ j , $ " $ # $
$ * $ . (Bengtsson et al., 2004)
! ! , ! XX !#
$ $&
238
1 / 2015
, #. F !! !
! # !% $ $. # ! #, # $ $ * " $
(Semenov et al., 2009).
4 – < < "
#> (5/2) (a) NCEP, () *[K# ECHAM5 +$[ "
(HadISST1) ()
*[K#[ ECHAM5/MPI-OM < 30- #>.
%$ $%#$ # . 5. C $( * $ % $. % " $ #$ $ # #
150 /$2 $!$ #$, %*$ 1000 /
$2. F ! !#! " #
" #% &. + # '$! X)[ (Bengtsson et al., 2004), $ $& "", #! $($ "" $ "$
$ -#!% # $. ] ($ ( $&) " $, &$ # $ $ * .
F$ #$, D+ !$ $ #
$& , ! ! $ # D+ ! $. $, &#% ", *% # , % $ !-
239
1 / 2015
#(, % $
$ , #
% $ .
5 – %
< < ]
" . $<
&
" "" < L Œ", .
* ,'&! ',, $ J ! !,*/%!$
*# c&,"!'#
$ ! $! # '$% !% F) " $% " ,
#!% D+. -!%, #$ # , *
D+, #$ , !#! ($ $$ #$ ( $ "" !% # #$$ "" & '#). ] % . >#$ F) LL $ ! #!$ " !% $ , #!% D+, .. ' $ # $ ! !$. ] % 1950-1970. + , ! ! " $% #$ ! % &# D+. ! # !$ $ 1978. ! ! "" ! 1953. (Walsh, Johnson, 1978), % 1960. . (Semenov, Latif, 2012) #,
240
1 / 2015
' ! * # $ #$ *
#$ XX (, ,
% $&),
, #$, ! $ !, $
" $.
'$ $ '&& D+ # ! '$ $ $, %( # D+ # $ $!% . $ % (!%) '$, % ! ( #
$, #$ # $. # # !% '$ $ #!
!% CMIP3 ! ! $, %* #! (Semenov et al., 2010). $!% $, #!% D+, # . 4. > $!% 0,088 , '$$ "$ #$ $ . !% $!% # . 6.
6 – #
(5/2), & < #> (D16) *[K#[ ECHAM5/MPI-OM. K , .
241
1 / 2015
$, " $!% , #! D+ ! #$ '$% !% # ! $, ! !
*% $!% ,
# $ % &. +$ $ ! ! !%, , * $, # "!, ! $ D+. '$
#$! * $ # ", , $ $, # ", !% '$% !%.
?!"! !$!$ J +0*( &!'
D $ $! $! , #! D+ ! ! '$! $ $ X)[ ECHAM5 $$ $
% $( (50 $) . >#$ '$ $ $ # #( F31 ($, 3,85°%3,85° ( ) 19 !% .
;$ # #( $,
# ! $! $ #$ $ ! (. Semenov et
al., 2008; Semenov and Latif 2012). ) $ % $ !$ $ !% "% $ (! ) " ( ) % "
. $ $ $, #! $ (" ),
# $*, #!$ Q-, !$ !$ '$ X)[ #!$ !$ $ F)
" $ # 1971-2000. D $
'&& D+ # ! ($!) " , #! D+. ! !: 1) ! '$ (CNTRL), $ Q- ! # !$
'$ X)[ ECHAM5 #$ !% (*% $$ $) $% !% F) $$ AMIP-II; 2) '$ (ATLICE) !$
$ (70°#.. – 80°.., 40°.(. – 90°.(.) (. 6,
! ) # % &, $ $ D+; 3) '$ (ATL) !$ $
(. 6, ) ( 70°#.. – 80°..,
40°.(. – 60°.(.); 4) '$ (ICE) !$ $ (. 5.8, ! ) ( 70°#.. – 80°..,
60°.(. – 90°.(.). D '$ 100
$!% .
242
1 / 2015
7 – + ($+5) 1978-2007. (°C/30 ) (
) GISS
() HadCRU3. () $+5 , & #>, (. . 6). % $+5
( °C) ( ) % #
# (ATLICE, ), % #
(ATL, ),
# (ICE, ). ?
< ( ) .
$! #$ $ !$ ($ (!$ #$ 0,39°C
(. 7). 0,24°C. ) $ % !% % . #! '$ $
c !$ $!$ $ (. 7a) # 243
1 / 2015
30 (1978-2007.). 1978. F) $$$ ! LL , !! . F$ #$, ! " % " '$$ D+ &#. +! . 7 7 %, $ $$$!
-# Z#, - $ # !$ $ $ . '$ ATLICE
$ F%$
30°.(., % '$ .
)! $!% , #!% D+, $ ! " # # '$ ATL ICE
(. 7 7, ). $ ($ ( )
, , $, 30% (, $
. >$ $ #$ $, Z # , $ Z (. 7). $!% #$ $!% '$% %( !$
$ (. 7 Semenov et al., 2010).
F$ #$, $ , " #
D+ $! #$ (! ) ,
$, 2 # !$ #$
(Zhang et al., 2007).
0/2! ! j % $! ( XX .
( $ $ #$ , * #!$ #$$ $ , !% " " #$ ! $. ! #! #!, #$ $ , *$, $, ! . $, $ $ $ $ CMIP3 (
" $$ $ $! ( #) # ( () $! 30 XX . , ! #, '
$ $ $ #$, $ , $ ($ # ( "" !% # $&) * ($ 2 #) #!(. /! -
244
1 / 2015
% $!% # $ !% $(% (Kravtsov, Spannagle, 2008), #! % '#$
& (Knutti, 2008) %($ # !% $!% % .
! '$! #! , , $, $ ( # 30 #$, !#! %$ &# $
! (X+) , !!* ! ! ( $ 60-70 ). ]$!
$ * "" # !$ $& # #!, X+
(Boning et al., 2006).
F '$! #!, XXI
D+ , $ j #$ $ . $, % #, !$ $$ " $. +$ ,
! $ #, !(. ] $ j &, * $ $$, . ;",
# #$, $ #$ , #!$, – “tipping point” (Lenton et
al. 2008), #, ( $
) $ % $! "! $
$. / ! $( * # , #$, (Lindsay, Zhang, 2005) # # ( !.
# % $ # &$ % $, # $ "" W$ ). F #! '#$ " $ C' (Latif et al., 2013). $% "" W $ ! $ C', #, " ! ( . , '#! % $ # 100 , $ $! ! !% ( W (. % #$ $!, "! #$ $!% '$, 0,2°, *
( ( # % !% $.
< (
G14-17-00647)
245
1 / 2015
!'"'/"
$ .. 2008. "
$ #$ $ . D! ;, . 418,
‚1, . 106-109.
$ .. 2010. D! $ % # !$ #$$ $. D" &#-$$% . > &# $&! $. .X. )%
;, X, 268 .
$ .., X% >.>., J& X. 2012. $!
% " $ #$ $ Z# # . >#. ;.
# $&! , . 48, ‚4, . 403-421.
Bengtsson, L., V.A. Semenov, Johannessen O. M. 2004. The earlytwentieth-century warming in the Arctic – A possible mechanism. J.
Climate, v. 17, pp. 4045-4057.
Boning C.W., Scheinert M., Dengg J., Biastoch A., Funk A. 2006.
Decadal variability of subpolar gyre transport and its reverberation in
the North Atlantic overturning. Geophysical Research Letters, v. 33,
doi: 10.1029/2006gl026906.
Booth B.B., Dunstone N.J., Halloran P.R., Andrews T., Bellouin N.
2012. Aerosols implicated as a prime driver of twentieth-century
North Atlantic climate variability, Nature, v. 484, pp. 228-232.
Brohan P., Kennedy J.J., Harris I., Tett S.F. B. Jones P.D. 2006.
Uncertainty estimates in regional and global observed temperature
changes: A new data set from 1850. J. Geophys. Res.-Atmos., v. 111,
D12106, doi:10.1029/2005jd006548.
Delworth T.L., Mann M.E. 2000. Observed and simulated multidecadal variability in the Northern Hemisphere. Clim. Dyn., v. 16,
pp. 661-676.
Graversen R.G., Mauritsen T., Tjernstrom M., Kallen E., Svensson, G.
2008 Vertical structure of recent Arctic warming, Nature, v. 451, pp.
53-54, 10.1038/nature06502.
Kalnay E., et al. 1996. The NCEP/NCAR 40-ear reanalysis project.
Bull. Am. Meteorol. Soc., v. 77, pp. 437-470.
Kerr R.A. 2000. A North Atlantic climate pacemaker for the centuries.
Science, v. 288, pp. 1984-1985.
Knutti R. 2008. Why are climate models reproducing the observed
global surface warming so well? Geophysical Research Letters, v. 35,
L18704, doi:10.1029/2008gl034932.
Kravtsov S., Spannagle C. 2008. Multidecadal climate variability in
Oobserved and modeled surface temperatures. J. Climate, v. 21, pp.
1104-1121.
246
1 / 2015
Latif M. Martin T., Park W. 2013. Southern Ocean Sector Centennial
Climate Variability and Recent Decadal Trends. J. Climate, v. 19, pp.
7767-7782.
Lenton T.M., et al. 2008. Tipping elements in the Earth's climate system, Proceedings of the National Academy of Sciences of the United
States of America. V. 105(6), pp. 1786-1793.
Lindsay R.W., Zhang J. 2005. Thinning Arctic Sea ice: Have we
passed a tipping point? Bulletin of the American Meteorological Society, v. 86(3), pp. 325-326.
Mangini A., Sp²tl C., Verdes P. 2005. Reconstruction of temperature
in the Central Alps during the past 2000 yr from a d18O stalagmite
record. Earth and Planetary Science Letters., v. 235, pp. 741-751.
Mann M.E., Park J. 1994. Global-scale modes of surface temperature
variability on interannual to century timescales. J. Geophys. Res., v.
99, pp. 25819-25833.
Meehl G.A., Covey C., Delworth T., Latif M., McAvaney B., Mitchell
J.F.B., Stouffer R.J., Taylor K.E. 2007. The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer.
Met. Soc., v. 88, pp. 1383-1394.
Otterå O.H., Bentsen M., Drange H., Suo L. 2010. External forcing as
a metronome for Atlantic multidecadal variability. Nature Geoscience,
v. 3, pp. 688-694.
Petoukhov V., Semenov V.A. 2010. A link between reduced BarentsKara sea ice and cold winter extremes over northern continents. J.
Geophys. Res. – Atmospheres, v. 115, D21111, doi:10.1029/
2009JD013568.
Rayner N.A., Parker D.E., Horton E.B., Folland C.K., Alexander L.V.,
Rowell D.P., Kent E.C., Kaplan A. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the
late nineteenth century. J. Geophys. Res., v. 108, D14, p. 4407
doi:10.1029/2002JD002670.
Schlichtholz P. 2011. Influence of oceanic heat variability on sea ice
anomalies in the Nordic Seas. Geophys. Res. Lett., v. 38, L05705,
doi:10.1029/2010GL045894.
Schlesinger M.E., Ramankutty N. 1994. An oscillation in the global
climate system of period 65-70 years. Nature, v. 367, pp. 723-726.
Semenov V.A., Latif M., Jungclaus J.H., Park W. 2008. Is the
observed NAO variability during the instrumental record unusual?
Geoph. Res. Lett., v. 35. Is. L11701, doi:10.1029/2008GL033273.
Semenov V.A., Park W., Latif M. 2009. Barents Sea inflow shutdown:
A new mechanism for rapid climate changes. Geoph. Res. Lett., v. 36,
L14709, doi:10.1029/ 2009GL038911.
Semenov V.A., Latif M., Dommenget D., Keenlyside N.S., Strehz A.,
247
1 / 2015
Martin T., Park W. 2010. The Impact of North Atlantic-Arctic Multidecadal Variability on Northern Hemisphere Surface Air Temperature. J. Climate v. 23, pp. 5668-5677.
Semenov V.A., Latif M. 2012. The early twentieth century warming
and winter Arctic sea ice. The Cryosphere, v. 6, pp. 1231-1237,
doi:10.5194/tc-6-1-2012.
Sutton R.T., Hodson D.L.R. 2007. Climate response to basinscale
warming and cooling of the North Atlantic Ocean. J. Climate, v. 20,
pp. 891-907.
Ting M.F., Kushnir Y., Seager R., Li C.H. 2009. Forced and Internal
Twentieth-Century SST Trends in the North Atlantic. Journal of Climate, v. 22, pp. 1469-1481.
Walsh J.E., Johnson C.M. 1978. Analysis of Arctic sea ice fluctuations 1953-1977. J. Phys. Oceanogr., v. 9, pp. 580-591.
Zhang R., Delworth T.L., Held I.M. 2007. Can the Atlantic Ocean
drive the observed multidecadal variability in Northern Hemisphere
mean temperature? Geophys. Res. Lett., v. 34, L02709, doi:10.1029/
2006GL028683.
248
Download