А.В. ербаков, В.В. Малахова, В.Г. Непомнящий

реклама
 .. , ..
,
.. 1141
1998
551.465+519.63
26.221.4+22.193.2
.., .., ..
. { , 1998. { 14 . { (!" /
$%. &. -. '()* 1141).
. . ! "#
.
$ #
# ! . # ! , # . &
'' .
\ {98{18", \ {98{30" '() \
" ( + 274).
ScherbakovA.V., Malakhova V.V., Nepomnjaschy V.G.
About receiving stationary solutions of the linearized problem of
the World Ocean climate. { Novosibirsk, 1998. { 14 p. { (Preprint /
RAN. Sib. Branch. Inst. of Comp. Math. and Math. Geoph.* 1141).
In work the three-dimensional linear model of a climate of World
ocean with (at bottom is represented. The numerical method of a solution is based on using the implicit schemes. The equations of heat
and salt transport on a horizontal coordinate are approximated by the
up-wind scheme with the help of Richardson's extrapolation. With a
model the series of numerical experiments was carried out till stationary
solutions. In a linear one-component model it is possible to receive a
stationary solution, and in thermohaline model with the nonlinear equation of a condition is obtained quasistationary solution. The in(uence of
a scheme di*usion to average temperature of ocean is analyzed.
c () , !, 1998
# $%&' (&$& LaTEX, $)! NCC
1. ( ,-. /0 / , " 0/ ,
1/ 2- 1/ - . 314 , , " " "4. !"3 , -. 5, 1". " 45 1 1100 , 1C /. "
, &
% " / ., 1:15C ", 81].
( / 1"0 1, 1
, / 3200 "1, - - 1" 1/ // .
$, 82, 3], - " / -. <"
. ,4 , . 0 <. <"
/
// .
,/ "3,, { 200 . = /
3 1
, , 1-.
" .-. "
, ,/ ,, 1 "
1 .
2. !
&1 1
2.
. 1 , ", , 440 % 83]:
1 @P + @ @u (1)
R1 u + `v = ;
a0 sin @ @z @z
;`u + R v = ; 1 @ P + @ @ v (2)
1
0
1 @ u + @ v sin + @ w = 0
a sin @
@
@z
a
@
@z
@z
(3)
4
2. = ;g0 + g
P
@
D+
@t
Zz
0
u
a
@
D + v @D + w @D =
sin @ a @
(4)
dz
@z
@
@z
D + 2 ED
@
@z
a
(5)
2
ED = 12 @ D2 + 1 @ sin @ D
@
sin @ sin @ , " 2 , D = (T S ),
h
i
;3
= 0 + 10
0:802(S ; 35) ; T (0:0735 + 0:00469 T ) : (6)
)- 1
/:
" z = 0
= ; @u
@z
T
=
0
T
@z
@z
(t )
" z = H
@u
@v
= ;R2
S
ZH
u dz
0
w
= ; =
@v
@z
0
S
w
= 0
(t )*
= ;R2
(7)
ZH
v dz
0
(8)
= 0 @@Tz = 0 @@Sz = 0*
"
. ;
@T
@n
= 0
@S
@n
= 0
u
n
( ,- t = 0
~(z ) S = S~(z ):
T = T
= 0*
(9)
(10)
2. 5
'",14/ 140 /:
, v , w { "- " "
/ , ,
z ( { , { , , z
"
)*
t
{ /*
P
{ *
0 , { / "*
P
{ 2 *
P { "
- 1
,*
= ;
g0
z = ( ) { 1
"
. *
R1 u, R1 v { "/ , 11
/*
{ <22 , 11 /*
, { <22- , , 11 221 " *
` = 2! cos { " L*
a, ! , g { 1, 1
/ , 1 - /3
= *
, { "/3/ / *
{ " "1T , S
- "
. *
R2
{ <22 / *
n
{ , "
. ;*
H
{ "// 1 *
~(z ), S~(z ) { , " "/ T
" .
u
6
3. / (1){(10) " " 83]. =,
, ", / 1
/ (5) "/1 ,- " ""1/
/ ., "1 ",
<"/ $ 84], ,- ",
" / ", 1040 1 1 "
. , ""1/ . /
"
" 85]. ! -/ "/ "
/.
3. # $%& !
'
( ", 72.5 4. . 87.5 . . / "/1/ 0 , <
"
. - ; 2.5. ( , " u, v , w, T , "- . . 3 1. .
),- " 11 221 "
2
2
@ T
@ T
E
T =
+
:
2
2
2
a2
a2 @ 2
a sin @ ( . <". = = 3:6 107 41, <
, "- , 1
"/. L , <
<22 R1 13/ 103. ,- "4 140 /:
= 4:5 10;6
;7
R2 = 0:5 10
R1
= 6:4 108 0 = 1:02541
a
= 75
= 0:5
;4
! = 0:73 10
g = 980:
( <". 1 1
//
T
(11)
= 0 "0 ; "1
T
0
7
3.1. T0 = 17:5, "0 = 1:00266, "1 = 3:17 10;3 .
" "
-. <"
14014 1.
, C
TW2Z6
T2Z6
TW2Z12
T2Z12
TSW1
TS1
TSW2
TS2
&(*
'&(
&(*
'&(
&(*
'&(
&(*
'&(
'&(
'&(
'&(
'&(
&(*
&(*
&(*
&(*
'&(
'&(
'&(
'&(
&(*
&(*
'&(
'&(
7.33
2.86
6.68
2.64
4.6
3.6
4.0
3.67
3.1. !
- <" TW2Z12 T2Z12 - "
"3 "/ 1
/
// 1,- = 0:5 " 4 = 1 87]. ( . <". " ,- "- ",
, . "/ "" 84],
" , . "
"/ "" 85]. ( <" TW2Z12 12 - 1
/ / "/ 1300 - "1
1
/ " -. "
. /40./ "1 .
. 1 "
" "1- . Q 700 // "1 6.67C, . -. . (10;7 )C , 600 " /.
$&&(- ./ 0 1'()%*')- -1!(*, 2 3 (& .%0(&.
8
3. .&%*'& &$-, 0.4
. 1. $ ( 140, <" T2Z12, "
. - /, , ", 1
"/ "
" . 3 , // , - "
2460 . = < / "
3 / ,4 (10;7) C. &// "1 " 4 "
- <" 1,, 2.67C.
5 - / / 2
"1- , 1 "
<". TSW1, TS1, U/// 1
. - -. . "1/. V
,, TW2 -
/ ,/ 1// " "14 1 - / 1
2, "
/ , . 86]. & < 3 "
,4 - "
- - <"- 6 " . !,1 . 221 " 1
,, < "
3
4
3.2. 9
82] 1
4 "1 7.33C <" TW2Z6, 3 1
4 <" 52Z6 2.85C.
( -. <"
87] <" // "1 1-
* " <22 , 11 221 = 1 .
3.2. "# ( "140 <"- "
, 1" ,4 (1){(10), 440 14 , 1 % 12 "
.
( <" TSW1 "
. - /40/ - " "1, "/3/ / . ! "- ",
,
. "
"/ "" 84]. Q / "/
1000 "1 1
/ . ' "1- " "
. 2. '
2 , "
- 200 ". -- "1-, / "/ 600 / "
1
/. L TW2Z12, " 1
/ "
1 "/, ./ "1 3 /
- 1{2C. &// "1 < <" 4:65, " 3 3, TW2Z12. X U/// "4, "
"/
4 . "
. - 4 ,
2
/ .-. . -. . '",1/ "/ "
/, 4 ,, "
"
4 .-. "
.-. "1 2 0C .
( . <" TS, 1 /, 1
/ "1 , 10
3. 2500{3000 . &// "1 " 4 "
- <" 1,, 3:6C (. . 2), "
- 4. &// "1 // 1, <"
TSW. ! 1
0 2, , "
, 3, U/// ,4 1
/ " ", 3 "1
. 221, 4 140 <" (TS2) 10
"
/ 1,.
)5&('& &$-, 0.4
. 2. $ 3.3. $%&' % (%
( 82] --
, ""3, " "
"
1 3
-, ./ 221/ (
/,), / "1
1 . -. /. , ",140. 14
1 " . ( 87] - ", 4 . 221 " "0,4 / " 1. . 3 1,, "11 1 2{3C.
3.3.
! " 11
=, - "
<22 4/ . /
" , , . & < ,4 "
<"- TSW2 TS2, 3, TSW1, TS1, " 1
/ " " ,- " ""1/ / .,
"1 ",
<"/ $ 84].
&
1,
<. <"
"-
, 4 , . /, " 4 ,, 01 <" 1 /. 5 // "1 , 4.6C (TSW1) 4C (TSW2), " 1
"1 1
, 3.6C (TS1) 3:68C (TS2).
!- <"- ", ". " 1.", 4 , . "
.-. -. .-. "/-. "1/ "
/4 "1, 1
"1- , 1,, 1 31 "1 <". 3.8C 87] 0.5C. X 3 <"14 , / , . / 44 "11 , / 1 0.65C -. <". TSW2 TWS1. 87] , "1 ,4 10;7 , . - .
"
.-. -. "1 , 1
/
. X . . 3, "
"1- " "3 <" TSW1 0 6000 . 5"1 // 1- .
5.- <" TS1 - 3 "3
0 4000 . &// "1 "3 /,/
" "/, < . 4.
'/ / " . " 1150 ,
12
3. - 3/ . " 2 30 . ( 88] -. <". ,4
"1 ", 3 ,,
. " 10 150 .
&$-, 0.4
. 3. + &$-, 0.4
. 4. + #
13
Y "14 , 87] 14 , "
.-. -. " "1 1,
" 1
// 3 "1/ 1
/ ., // "1 14014 1 " "1 "-10 -.
($
,1] / 0.&., 1 .. $ # / // "&3, 1998. { 7. 68, 9 1. {
$. 23{29.
,2] < &.. =
#
. { 3
, 1989. { (? / &3 $$$".
$. -. @A 859).
,3] < &.., .., &! D.3. # E . { 3
,
1997. { (? / "&3. $. -. +0A 1106)
,4] < &.., .. "
'' . { 3
, 1985. { (? /
&3 $$$". $. -. @A 631).
,5] "# ?. #
. { .: , 1980.
,6] .. K ! // 7. '! #. { 3
,
1997. { $. 136{146.
,7] < &.., 3L .0. # K. { 3
, 1997. { (? / "&3. $. -, +0A 1108)
,8] /
.M. !! // . { 1998. {
9 2. { $. 54{67.
Скачать