¨¸Ó³ ¢ —Ÿ. A. 2012. ’. 9, º 9Ä10. ‘. 182Ä186 ”ˆ‡ˆŠ ‹…Œ…’›• —‘’ˆ– ˆ ’Œƒ Ÿ„. ’…ˆŸ C…Š’› ’Œ‘”…›• …‰’ˆ ‚›‘Šˆ• …ƒˆ‰ . . ¥É·μ¢ 1 , ’. ‘. ‘¨´¥£μ¢¸± Ö 2 , ‘. ˆ. ‘¨´¥£μ¢¸±¨° 3 ˆ·±Êɸ±¨° £μ¸Ê¤ ·¸É¢¥´´Ò° Ê´¨¢¥·¸¨É¥É, ˆ·±Ê¸É¸±, μ¸¸¨Ö ˆ·±Êɸ±¨° £μ¸Ê¤ ·¸É¢¥´´Ò° Ê´¨¢¥·¸¨É¥É ¶ÊÉ¥° ¸μμ¡Ð¥´¨Ö, ˆ·±Ê¸É¸±, μ¸¸¨Ö ‚Ò¶μ²´¥´ · ¸Î¥É Ô´¥·£¥É¨Î¥¸±¨Ì ¸¶¥±É·μ¢ ¨ §¥´¨É´μ-Ê£²μ¢ÒÌ · ¸¶·¥¤¥²¥´¨° ɳμ¸Ë¥·´ÒÌ ³Õμ´´ÒÌ ´¥°É·¨´μ ¢Ò¸μ±¨Ì Ô´¥·£¨° ¤²Ö ¤¢ÊÌ ¢ ·¨ ´Éμ¢ ¶ · ³¥É·¨§ ͨ¨ ¸¶¥±É· ¶¥·¢¨Î´ÒÌ ±μ¸³¨Î¥¸±¨Ì ²ÊÎ¥° (ƒ °¸¸¥· Ä•μ´¤Ò ¨ ‡ Í¥¶¨´ Ä‘μ±μ²Ó¸±μ°) ¸ ¨¸¶μ²Ó§μ¢ ´¨¥³ ³μ¤¥²¥° ¤·μ´´ÒÌ ¢§ ¨³μ¤¥°¸É¢¨° QGSJET-II-03 ¨ SIBYLL 2.1. ‘· ¢´¥´¨¥ ʸ·¥¤´¥´´μ£μ ¶μ §¥´¨É´Ò³ Ê£² ³ ¸¶¥±É· ³Õμ´´ÒÌ ´¥°É·¨´μ ¸ ·¥§Ê²ÓÉ É ³¨ Ô±¸¶¥·¨³¥´Éμ¢ Frejus, AMANDA-II ¨ IceCube40 ¶μ± §Ò¢ ¥É, ÎÉμ ¤ ¦¥ ¶·¨ Ô´¥·£¨ÖÌ ¢ÒÏ¥ 100 ’Ô‚ ¢±² ¤ ´¥°É·¨´μ μÉ · ¸¶ ¤μ¢ μÎ ·μ¢ ´´ÒÌ Î ¸É¨Í ´¥ ʤ ¥É¸Ö μ¶·¥¤¥²¨ÉÓ μ¤´μ§´ δμ. ·¨Î¨´ ÔÉμ£μ Å ³ ²Ò° ¢±² ¤ ÔÉμ° ±μ³¶μ´¥´ÉÒ ¨ ¢¸¥ ¥Ð¥ ¡μ²ÓϨ¥ Ô±¸¶¥·¨³¥´É ²Ó´Ò¥ μϨ¡±¨. The calculation of the atmospheric high-energy muon neutrino spectra and zenith-angle distributions is performed for two of the primary spectrum parameterizations (by GaisserÄHonda and by ZatsepinÄ Sokolskaya) with usage of the hadronic models, QGSJET-II-03, SIBYLL 2.1. The comparison of zenith angle-averaged muon neutrino spectrum with the data of Frejus, AMANDA-II, IceCube40 experiments makes it clear that even at energies above 100 TeV the prompt neutrino contribution is not apparent because of considerable uncertainties of the experimental data in high-energy region. PACS: 13.85.-t; 13.85.tp; 13.15.+g ¥°É·¨´μ ¢Ò¸μ±¨Ì ¨ ¸¢¥·Ì¢Ò¸μ±¨Ì Ô´¥·£¨°, μ¡· §ÊÕШ¥¸Ö ¶·¨ · ¸¶ ¤ Ì ³Õμ´μ¢, ¶¨μ´μ¢, ± μ´μ¢ ¨ μÎ ·μ¢ ´´ÒÌ Î ¸É¨Í Ϩ·μ±μ£μ ɳμ¸Ë¥·´μ£μ ²¨¢´Ö, ¶μ·μ¦¤ ¥³μ£μ ±μ¸³¨Î¥¸±¨³¨ ²ÊÎ ³¨ ¢ ɳμ¸Ë¥·¥ ‡¥³²¨, ¸μ¸É ¢²ÖÕÉ ´¥Ê¸É· ´¨³Ò° Ëμ´ ¤²Ö ¤¥É¥±É¨·μ¢ ´¨Ö ¸É·μ˨§¨Î¥¸±¨Ì ´¥°É·¨´μ Å ¢ ¦´μ° § ¤ Ψ, ¤²Ö ·¥Ï¥´¨Ö ±μÉμ·μ° ¸μ§¤ ´Ò ¡μ²ÓϨ¥ £²Ê¡μ±μ¢μ¤´Ò¥ É¥²¥¸±μ¶Ò ’200+ [1], ANTARES [2], IceCube40 [3]. ¡² ¸ÉÓ ¢Ò¸μ±¨Ì ¨ ¸¢¥·Ì¢Ò¸μ±¨Ì Ô´¥·£¨° ¸É ´μ¢¨É¸Ö ¤μ¸Éʶ´μ° ¤²Ö Ô±¸¶¥·¨³¥´É ²Ó´μ£μ ¨§ÊÎ¥´¨Ö ɳμ¸Ë¥·´ÒÌ ´¥°É·¨´μ Éμ²Ó±μ ¢ ¶μ¸²¥¤´¨¥ £μ¤Ò. Š ´ ¸ÉμÖÐ¥³Ê ¢·¥³¥´¨ Ô´¥·£¥É¨Î¥¸±¨° ¸¶¥±É· ɳμ¸Ë¥·´ÒÌ ³Õμ´´ÒÌ ´¥°É·¨´μ ¢Ò¸μ±¨Ì Ô´¥·£¨° ¨§³¥·¥´ ´ É·¥Ì Ê¸É ´μ¢± Ì: Frejus [4] ¶·¨ Ô´¥·£¨ÖÌ ¤μ 1 ’Ô‚, AMANDA-II [5] ¢ ¨´É¥·¢ ²¥ Ô´¥·£¨° 1Ä100 ’Ô‚, IceCube40 [3] ¢ ¤¨ ¶ §μ´¥ 100 ƒÔ‚ Ä 400 ’Ô‚. ¸ÉÊШ° ¢±² ¤ ¢ ´¥°É·¨´´Ò° ¶μÉμ± ¶·¨ Ô´¥·£¨ÖÌ ¢ÒÏ¥ 100 ’Ô‚ ¤μ²¦´Ò ¤ ¢ ÉÓ · ¸¶ ¤Ò μÎ ·μ¢ ´´ÒÌ Î ¸É¨Í Å ¨¸Éμ䨱 ´ ¨¡μ²ÓÏ¥° ´¥μ¶·¥¤¥²¥´´μ¸É¨. μÔÉμ³Ê ¸· ¢´¥´¨¥ · ¸Î¥É ¤²Ö · §´ÒÌ ³μ¤¥²¥° ¤·μ´´ÒÌ ¢§ ¨³μ¤¥°¸É¢¨° ¸ ·¥§Ê²ÓÉ É ³¨ ¨§³¥·¥´¨° ¸¶¥±É· ´¥°É·¨´μ ¶·¥¤¸É ¢²Ö¥É ¨´É¥·¥¸, ´¥¸³μÉ·Ö ´ ¡μ²ÓϨ¥ ¸É ɨ¸É¨Î¥¸±¨¥ ¨ ¸¨¸É¥³ ɨΥ¸±¨¥ μϨ¡±¨ Ô±¸¶¥·¨³¥´É ¢ μ¡² ¸É¨ ¢Ò¸μ±¨Ì Ô´¥·£¨°. 1 E-mail: [email protected] [email protected] 3 E-mail: [email protected] 2 E-mail: C¶¥±É·Ò ɳμ¸Ë¥·´ÒÌ ´¥°É·¨´μ ¢Ò¸μ±¨Ì Ô´¥·£¨° 183 ·¥¤¸É ¢²¥´´Ò° ¢ ¤ ´´μ° · ¡μÉ¥ · ¸Î¥É ¶μÉμ±μ¢ ɳμ¸Ë¥·´ÒÌ ´¥°É·¨´μ ¢ ¨´É¥·¢ ²¥ Ô´¥·£¨° 10Ä107 ƒÔ‚ ¤²Ö §¥´¨É´ÒÌ Ê£²μ¢ μÉ 0 ¤μ 90◦ ¨ ʸ·¥¤´¥´´μ£μ ¶μ §¥´¨É´μ³Ê Ê£²Ê Ô´¥·£¥É¨Î¥¸±μ£μ ¸¶¥±É· ¢Ò¶μ²´¥´ ¸ ¨¸¶μ²Ó§μ¢ ´¨¥³ ³μ¤¥²¥° ¤·μ´´ÒÌ ¢§ ¨³μ¤¥°¸É¢¨° SIBYLL 2.1 [6] ¨ QGSJET-II-03 [7], ±μÉμ·Ò¥ Ϩ·μ±μ ¶·¨³¥´ÖÕÉ¸Ö ¤²Ö ³μ¤¥²¨·μ¢ ´¨Ö Ϩ·μ±¨Ì ɳμ¸Ë¥·´ÒÌ ²¨¢´¥° ¶μ ³¥Éμ¤Ê Œμ´É¥-Š ·²μ, É ±¦¥ ¤²Ö · ¸Î¥Éμ¢ ¶μÉμ±μ¢ ¤·μ´μ¢ ¨ ³Õμ´μ¢ ±μ¸³¨Î¥¸±¨Ì ²ÊÎ¥° [8]. ¸Î¥É ¶·μ¨§¢¥¤¥´ ¤²Ö ¤¢ÊÌ ¶ · ³¥É·¨§ ͨ° ¨§³¥·¥´´μ£μ ¢ Ô±¸¶¥·¨³¥´É¥ ¸¶¥±É· ¨ ¸μ¸É ¢ ¶¥·¢¨Î´ÒÌ ±μ¸³¨Î¥¸±¨Ì ²ÊÎ¥°. Œμ¤¥²Ó ‡ Í¥¶¨´ ¨ ‘μ±μ²Ó¸±μ° (ZS) [9] Ìμ·μÏμ 춨¸Ò¢ ¥É ¤ ´´Ò¥ ¶·Ö³ÒÌ ¨§³¥·¥´¨° ATIC-2 ¢ ¨´É¥·¢ ²¥ 10Ä104 ƒÔ‚ [10] ¨ ¤ ¥É ³μɨ¢¨·μ¢ ´´ÊÕ Ô±¸É· ¶μ²ÖÍ¨Õ ÔÉ¨Ì ¤ ´´ÒÌ ¤²Ö μ¡² ¸É¨ Ô´¥·£¨° ¤μ 100 Ô‚, £¤¥ ¸¶¥±É· ¨ ¸μ¸É ¢ ¢μ¸¸É ´ ¢²¨¢ ÕÉ¸Ö ´ μ¸´μ¢¥ ¨§³¥·¥´´ÒÌ Ì · ±É¥·¨¸É¨± Ϩ·μ±¨Ì ɳμ¸Ë¥·´ÒÌ ²¨¢´¥°. „·Ê£μ° ¨¸¶μ²Ó§Ê¥³Ò° ¢ ·¨ ´É Å ¨§¢¥¸É´ Ö ¶ · ³¥É·¨§ ꬅ ¸¶¥±É· ¨ ¸μ¸É ¢ ¶¥·¢¨Î´ÒÌ ±μ¸³¨Î¥¸±¨Ì ²ÊÎ¥° ƒ °¸¸¥· Ä •μ´¤Ò (GH) [11] (¢¥·¸¨Ö ¸ ¢Ò¸μ±¨³ ¸μ¤¥·¦ ´¨¥³ Ö¤¥· £¥²¨Ö). ¡¥ ³μ¤¥²¨ ¸μ£² ¸ÊÕÉ¸Ö ¸ ¤ ´´Ò³¨ Ô±¸¶¥·¨³¥´É KASCADE [12]. ‘· ¢´¥´¨¥ · ¸¸Î¨É ´´ÒÌ ¸¶¥±É·μ¢ νμ + ν̄μ ´¥°É·¨´μ μÉ (μ, π, K)-· ¸¶ ¤μ¢ (ʸ·¥¤´¥´´ÒÌ ¶μ §¥´¨É´μ³Ê Ê£²Ê) ¸ ¤ ´´Ò³¨, ¶μ²ÊÎ¥´´Ò³¨ ´ Ê¸É ´μ¢± Ì Frejus, AMANDA-II ¨ IceCube40, ¶μ± § ´μ ´ ·¨¸. 1, 2. §²¨Î¨¥ ¶¥·¢¨Î´ÒÌ ¸¶¥±É·μ¢ ³μ¤¥²¥° GH ¨ ZS ¸É ´μ¢¨É¸Ö § ³¥É´Ò³ ¶μ¸²¥ 100 ’Ô‚, £¤¥ ´ ¶μÉμ±¥ ´¥°É·¨´μ ¸± §Ò¢ ¥É¸Ö ¨§²μ³ ¶¥·¢¨Î´μ£μ ¸¶¥±É· ±μ¸³¨Î¥¸±¨Ì ²ÊÎ¥° (·¨¸. 1). ·¨ Ô´¥·£¨¨ 1 Ô‚ · ¸Î¥É´Ò° ¶μÉμ± ´¥°É·¨´μ ¤²Ö ¸¶¥±É· GH ¶Öɨ±· É´μ ¶·¥¢ÒÏ ¥É ¶μÉμ± ¤²Ö ¸¶¥±É· ZS. ·¥¤¸± § ´´Ò¥ ¶μÉ챨 ´¥°É·¨´μ, ¶μ²ÊÎ¥´´Ò¥ ¸ ¨¸¶μ²Ó§μ¢ ´¨¥³ ³μ¤¥²¨ ¤·μ´ÒÌ ¢§ ¨³μ¤¥°¸É¢¨° SIBYLL 2.1, ¶·¨¡²¨§¨É¥²Ó´μ ¢ ¶μ²Éμ· · § ¢ÒÏ¥ ¶·¥¤¸± § ´¨° ¤·Ê£μ° ³μ¤¥²¨ Å QGSJET-II-03 (·¨¸. 2). ¨¸. 1. ‘¶¥±É· ɳμ¸Ë¥·´ÒÌ νμ + ν̄μ , ʸ·¥¤´¥´´Ò° ¶μ §¥´¨É´μ³Ê Ê£²Ê: ¸¶²μÏ´ Ö ²¨´¨Ö Å § ¢¨¸¨³μ¸ÉÓ μÉ ¸¶¥±É· ¶¥·¢¨Î´ÒÌ ±μ¸³¨Î¥¸±¨Ì ²ÊÎ¥°; Éμα¨ Å ¤ ´´Ò¥ Ô±¸¶¥·¨³¥´Éμ¢ Frejus, AMANDA-II, IceCube40 184 ¥É·μ¢ . ., ‘¨´¥£μ¢¸± Ö ’. ‘., ‘¨´¥£μ¢¸±¨° ‘. ˆ. ¨¸. 2. ´¥·£¥É¨Î¥¸±¨° ¸¶¥±É· νμ + ν̄μ , ʸ·¥¤´¥´´Ò° ¶μ §¥´¨É´μ³Ê Ê£²Ê: ¸¶²μÏ´ Ö ²¨´¨Ö Å § ¢¨¸¨³μ¸ÉÓ μÉ ³μ¤¥²¨ ¤·μ´´ÒÌ ¢§ ¨³μ¤¥°¸É¢¨° ¨¸. 3. μÉ챨 ³Õμ´´ÒÌ ´¥°É·¨´μ μÉ (μ, π, K, D)-· ¸¶ ¤μ¢. ·¨¢¥¤¥´Ò Ô±¸¶¥·¨³¥´É ²Ó´Ò¥ ¤ ´´Ò¥ Frejus, AMANDA-II ¨ IceCube40. ¸Î¥ÉÒ ¤²Ö ¶¥·¢¨Î´μ£μ ¸¶¥±É· ³μ¤¥²¨ ZS: ¸¶²μÏ´ Ö ²¨´¨Ö Å μ¡Òδҥ ´¥°É·¨´μ (μÉ (μ, π, K)-· ¸¶ ¤μ¢); ¶Ê´±É¨·´ Ö Å ¸Ê³³ μ¡ÒδÒÌ ´¥°É·¨´μ ¨ ´¥°É·¨´μ μÉ · ¸¶ ¤μ¢ μÎ ·μ¢ ´´ÒÌ Î ¸É¨Í ¢ · ³± Ì RQPM; ÏÉ·¨Ìμ¢ Ö Å Éμ ¦¥ ¸ ³μ¥, ´μ ¤²Ö ®¶·Ö³Ò̯ ´¥°É·¨´μ ¢ QGSM C¶¥±É·Ò ɳμ¸Ë¥·´ÒÌ ´¥°É·¨´μ ¢Ò¸μ±¨Ì Ô´¥·£¨° 185 ‘ʳ³ ·´Ò° ¸¶¥±É· μ¡ÒδÒÌ ¨ ®¶·Ö³Ò̯ ´¥°É·¨´μ, · ¸¸Î¨É ´´Ò° ¸ ¨¸¶μ²Ó§μ¢ ´¨¥³ QGSJET-II-03 ¨ ³μ¤¥²¨ ±¢ ·±-£²Õμ´´ÒÌ ¸É·Ê´ (QGSM) [13], ´¥¶²μÌμ 춨¸Ò¢ ¥É ¤ ´´Ò¥ IceCube40 (·¨¸. 3). ·¥¤¸± § ´´Ò¥ ¸ ¨¸¶μ²Ó§μ¢ ´¨¥³ QGSM, ¶μÉ챨 ³Õμ´´ÒÌ ´¥°É·¨´μ ¢ ¨´É¥·¢ ²¥ 200Ä400 ’Ô‚ ´¥ ¶·μɨ¢μ·¥Î É μ£· ´¨Î¥´¨Õ ´ ¤¨ËËʧ´Ò° ¶μÉμ± ¸É·μ˨§¨Î¥¸±¨Ì ´¥°É·¨´μ (7,2 · 10−9 E −2 ƒÔ‚−1 · ¸³−2 · ¸−1 · ¸·−1 ), Ê¸É ´μ¢²¥´´μ³Ê IceCube59 [14] ¤²Ö ¨´É¥·¢ ² Ô´¥·£¨° 160 ’Ô‚ Ä 40 Ô‚. ‚ μɲ¨Î¨¥ μÉ QGSM, ·¥±μ³¡¨´ Í¨μ´´ Ö ±¢ ·±-¶ ·Éμ´´ Ö ³μ¤¥²Ó (RQPM ´ ·¨¸. 3) ¶·¥¤¸± §Ò¢ ¥É § ¢ÒÏ¥´´Ò° ¶μÉμ± ³Õμ´´ÒÌ ´¥°É·¨´μ, ´¥ ¸μ£² ¸ÊÕШ°¸Ö ¸μ ¸¶¥±É·μ³, ¨§³¥·¥´´Ò³ ¢ Ô±¸¶¥·¨³¥´É¥ IceCube40. ˆÉ ±, ¢Ò¶μ²´¥´´Ò° · ¸Î¥É ¸¶¥±É·μ¢ ³Õμ´´ÒÌ ´¥°É·¨´μ ¶μ± § ² ¸² ¡ÊÕ § ¢¨¸¨³μ¸ÉÓ μÉ ³μ¤¥²¨ ¸¶¥±É· ¨ ¸μ¸É ¢ ¶¥·¢¨Î´ÒÌ ±μ¸³¨Î¥¸±¨Ì ²ÊÎ¥° ¢ μ¡² ¸É¨ 10Ä105 ƒÔ‚, ´¥ ¢±²ÕÎ ÕÐ¥° ¨§²μ³ ¸¶¥±É· ±μ¸³¨Î¥¸±¨Ì ²ÊÎ¥°. ¤´ ±μ ¨¸¶μ²Ó§μ¢ ´¨¥ ³μ¤¥²¥° ¤·μ´´ÒÌ ¢§ ¨³μ¤¥°¸É¢¨° QGSJET-II ¨ SIBYLL 2.1 ¢ ÔÉμ° μ¡² ¸É¨ Ô´¥·£¨° ¶·¨¢μ¤¨É ± § ³¥É´μ³Ê · §²¨Î¨Õ ¶μÉμ±μ¢ ´¥°É·¨´μ, μ¸´μ¢´Ò³ ¨¸Éμδ¨±μ³ ±μÉμ·μ£μ ¶·¨ Ô´¥·£¨ÖÌ ¤μ 100 ’Ô‚ Ö¢²ÖÕɸÖ, ¶μ-¢¨¤¨³μ³Ê, ¶·μÍ¥¸¸Ò ·μ¦¤¥´¨Ö ± μ´μ¢. ·¨ ¡μ²¥¥ ¦¥ ¢Ò¸μ±¨Ì Ô´¥·£¨ÖÌ ¶·¨³¥Ï¨¢ ÕÉ¸Ö ´¥μ¶·¥¤¥²¥´´μ¸É¨, ¸¢Ö§ ´´Ò¥ ¸ ¸¥Î¥´¨Ö³¨ ·μ¦¤¥´¨Ö μÎ ·μ¢ ´´ÒÌ Î ¸É¨Í. ‘· ¢´¥´¨¥ · ¸¸Î¨É ´´μ£μ ¶μÉμ± ³Õμ´´ÒÌ ´¥°É·¨´μ ¸ ¨§³¥·¥´¨Ö³¨ IceCube40 ¶μ± §Ò¢ ¥É, ÎÉμ ³μ¤¥²Ó QGSJET-II-03 Ö¢²Ö¥É¸Ö ¡μ²¥¥ ¶·¥¤¶μÎɨɥ²Ó´μ°. “봃 ¢±² ¤ ¶·Ö³ÒÌ ´¥°É·¨´μ ¢ · ³± Ì ³μ¤¥²¨ ±¢ ·±-£²Õμ´´ÒÌ ¸É·Ê´ (QGSM) ¶·¨¢μ¤¨É ± ʲÊÎÏ¥´¨Õ ¸μ£² ¸¨Ö · ¸Î¥É ¨ Ô±¸¶¥·¨³¥´É . ‚¥·Ì´¨° ¶·¥¤¥² ´ ¤¨ËËʧ´Ò¥ ¶μÉ챨 ¸É·μ˨§¨Î¥¸±¨Ì ´¥°É·¨´μ, Ê¸É ´μ¢²¥´´Ò° IceCube59 [14] ¤²Ö ¨´É¥·¢ ² 160 ’Ô‚ Ä 40 Ô‚, ¶μ§¢μ²Ö¥É ¶μ²ÊΨÉÓ μ£· ´¨Î¥´¨Ö ´ ³μ¤¥²¨ ·μ¦¤¥´¨Ö μÎ ·μ¢ ´´ÒÌ Î ¸É¨Í. Œμ¤¥²Ó ±¢ ·±-£²Õμ´´ÒÌ ¸É·Ê´ ´¥ ¶·μɨ¢μ·¥Î¨É ÔÉμ³Ê ¶·¥¤¥²Ê, ¶·¥¤¸± § ´¨¥ ¦¥ ¶μÉμ± ¶·Ö³ÒÌ ´¥°É·¨´μ [13] ¢ · ³± Ì ·¥±μ³¡¨´ Í¨μ´´μ° ±¢ ·±-¶ ·Éμ´´μ° ³μ¤¥²¨ (RQPM) ´¥ ¶μ²ÊÎ ¥É ¶μ¤É¢¥·¦¤¥´¨Ö. ¸ÉμÖÐ Ö · ¡μÉ ¢Ò¶μ²´¥´ ¶·¨ ˨´ ´¸μ¢μ° ¶μ¤¤¥·¦±¥ Œ¨´¨¸É¥·¸É¢ μ¡· §μ¢ ´¨Ö ¨ ´ ʱ¨ ” ¢ · ³± Ì ”– ® Êδҥ ¨ ´ Êδμ-¶¥¤ £μ£¨Î¥¸±¨¥ ± ¤·Ò ¨´´μ¢ Í¨μ´´μ° μ¸¸¨¨¯ (ƒŠ º 14.740.11.0890, 681). ‘ˆ‘Š ‹ˆ’…’“› 1. Aynutdinov V. et al. Search for a Diffuse Flux of High-Energy Extraterrestrial Neutrinos with the NT200 Neutrino Telescope // Astropart. Phys. 2006. V. 25. P. 140Ä150; ¢·μ·¨´ . ‚. ¨ ¤·. μ¨¸± ¸É·μ˨§¨Î¥¸±¨Ì ´¥°É·¨´μ ¢ °± ²Ó¸±μ³ ´¥°É·¨´´μ³ ¶·μ¥±É¥ // ¨¸Ó³ ¢ —Ÿ. 2011. ’. 8, º 7. ‘. 1171Ä1191. 2. Biagi S. et al. Upper Limit on the Diffuse Flux of Cosmic νμ with ANTARES Neutino Telescope // Nucl. Phys. B (Proc. Suppl.). 2011. V. 212Ä213. P. 109Ä114. 3. Abbasi R. et al. Measurement of the Atmospheric Neutrino Energy Spectrum from 100 GeV to 400 TeV with IceCube // Phys. Rev. D. 2011. V. 83. 012001. 4. Daum K. et al. Determination of the Atmospheric Neutrino Spectra with the Frejus Detector // Z. Phys. C. 1995. V. 66. P. 417Ä428. 5. Abbasi R. et al. The Energy Spectrum of Atmospheric Neutrinos between 2 and 200 TeV with the AMANDA-II Detector // Astropart. Phys. 2010. V. 34. P. 48Ä58. 6. Fletcher R. S. et al. SIBYLL: An Event Generator for Simulation of High-Energy Cosmic Ray Cascades // Phys. Rev. D. 1994. V. 50. P. 5710Ä5731; 186 ¥É·μ¢ . ., ‘¨´¥£μ¢¸± Ö ’. ‘., ‘¨´¥£μ¢¸±¨° ‘. ˆ. 7. 8. 9. 10. 11. 12. 13. Ahn E.-J. et al. Cosmic Ray Interaction Event Generator SIBYLL 2.1 // Phys. Rev. D. 2009. V. 80. 094003. Ostapchenko S. QGSJET-II: Towards Reliable Description of Very High Energy Hadronic Interactions // Nucl. Phys. (Proc. Suppl.). 2006. V. 151. P. 143Ä146. Kochanov A. A., Sinegovskaya T. S., Sinegovsky S. I. High-Energy Cosmic Ray Fluxes in the Earth Atmosphere: Calculations vs Experiments // Astropart. Phys. 2008. V. 30. P. 219Ä233; Sinegovsky S. I. et al. Atmospheric Muon Flux at PeV Energies // Intern. J. Mod. Phys. A. 2010. V. 25. P. 3733Ä3740. Zatsepin V. I., Sokolskaya N. V. Three Component Model of Cosmic Ray Spectra from 10 GeV to 100 PeV // Astron. Astrophys. 2006. V. 458. P. 1Ä5. ´μ¢ . „. ¨ ¤·. ²¥³¥´É ·´Ò¥ Ô´¥·£¥É¨Î¥¸±¨¥ ¸¶¥±É·Ò ±μ¸³¨Î¥¸±¨Ì ²ÊÎ¥° ¶μ ¤ ´´Ò³ Ô±¸¶¥·¨³¥´É ATIC-2 // ˆ§¢. . ‘¥·. ˨§. 2007. ’. 71. ‘. 512Ä515. Gaisser T. K., Honda M. Flux of Atmospheric Neutrinos // Ann. Rev. Nucl. Part. Sci. 2002. V. 52. P. 153Ä199. Apel W. D. et al. Energy Spectra of Elemental Groups of Cosmic Rays: Update on the KASCADE Unfolding Analysis // Astropart. Phys. 2009. V. 31. P. 86Ä91. Bugaev E. V. et al. Prompt Leptons in Cosmic Rays // Nuovo Cim. C. 1989. V. 12. P. 41Ä73; Bugaev E. V. et al. Atmospheric Muon Flux at Sea Level, Underground and Underwater // Phys. Rev. D. 1998. V. 58. 54001. 14. Schukraft A. et al. Search for a Diffuse Flux of Astrophysical Muon Neutrinos with the IceCube Detector // Proc. of the 32 ICRC, Beijing, 2011. 0736. http://indico.ihep.ac.cn/contributionDisplay.py?contribId=736&sessionId=52&confId=1628.