Н.Ю. Смайльс О ГЛУБИНЕ ПОГРУЖЕНИЯ ВЕРТИКАЛЬНО

Реклама
&medek“ cnpm“j`-2003[ qelhm`p № 14
òîëî÷èíû êàìåðû âî èçáåæàíèå
ïåðå÷èñëåííûõ íåäîñòàòêîâ.
”ƒ 622.831.322.234.42
Ðåæèì çàãëóáëåííîé âîäîïîäà÷è îïðåäåëåí ñëåäóþùèìè
Õ.fi. –χÈθÒ
òåõíîëîãè÷åñêèìè
óñëîâèÿìè.
Êîíåö
(áàøìàê)
âîäîïîäàþùåé
Œ √À”¡»Õ≈ œŒ√—”∆≈Õ»fl ¬≈—“» ¿À‹ÕŒ
êîëîííû îïóñêàåòñÿ îò 20-50 äî
Õ¿œ—¿¬À≈ÕÕŒ… –“—”» ¬ –—≈ƒ≈
100 ì (20 ì â íà÷àëüíûé ïåðèîä)
Õ¿–¤Ÿ≈ÕÕ¤’ —¿––ŒÀŒ¬ ¿Ã≈—¤
íèæå êðîâëè ôîðìèðóåìîé ñòóïåíè (ñëîÿ) [10] ñ ó÷åòîì ñòðàòèôèêàöèè ðàññîëüíîé ñðåäû â
çîíó
ðàññîëîâ
ïîâûøåííîé
ïëîòíîñòè. Êîíåö ðàññîëîçàáîððàêòèêà ïîäçåìíîãî ðàñòâîðåíèÿ øèðîêî èñíîé êîëîííû óñòàíàâëèâàåòñÿ íà óðîâíå êðîâëè ðàïîëüçóåòñÿ ïðè ñòðîèòåëüñòâå åìêîñòåéíåå îòðàáîòàííîé ñòóïåíè äëÿ îòêà÷êè êîíäèöèîíõðàíèëèù â ôîðìàöèÿõ êàìåííîé ñîëè è ïðè
íîãî ðàññîëà ïëîòíîñòüþ ρñð = 1,2 ã/ñì3, ÷òî ñîîòäîáû÷å õëîðèäíî-íàòðèåâûõ (NaCl) ðàññîëîâ. ×åðåç
âåòñòâóåò êîíöåíòðàöèè Ñ = 306÷316,7ã/ë, íåîáõîñêâàæèíû, ïðîáóðåííûå ñ ïîâåðõíîñòè è ñèñòåìó
äèìîé äëÿ âûïàðèâàíèÿ ñîëè. Ðàñòâîðèòåëü ïðè ýòîì
âîäîïîäàþùåé è ðàññîëîçàáîðíîé òðóá, â ðåçóëüòàòå ðàñòâîðåíèÿ, ïîëó÷àþò ïîäçåìíûå êàìåðû, ðàçìîæåò èìåòü ïëîòíîñòü ïîäàâàåìîé âîäû ρð = 1,0
ìåðû è ôîðìû êîòîðûõ îïðåäåëÿþòñÿ òåõíîëîãè÷åã/ñì3 , ëèáî ïëîòíîñòü ñëàáîãî ðàññîëà, ïîëó÷åííîãî
ñêèì ïðåäíàçíà÷åíèåì è ïîëíîòîé èçâëå÷åíèÿ ïîðàíåå ïðè îòðàáîòêå ôîð-êàìåðû ρð = 1,152÷1,152
ëåçíîãî èñêîïàåìîãî [1, 2]. Â íàñòîÿùåå âðåìÿ íà
ã/ñì3, ÷òî ñîîòâåòñòâóåò êîíöåíòðàöèè Ñ = 250 ã/ë
ïðàêòèêå èñïîëüçóþòñÿ óïðàâëÿåìûå ñïîñîáû, ïî[11, 12].
çâîëÿþùèå óïðàâëÿòü ïðîöåññàìè ðàñòâîðåíèÿ è
Ãèäðîäèíàìè÷åñêàÿ êàðòèíà ïðåäñòàâëÿåò ñîáîé
ôîðìîîáðàçîâàíèÿ ïîäçåìíîé âûðàáîòêè. Ïðè ïîçàìêíóòûé öèêë äâèæåíèÿ ïîòîêîâ âíóòðè êàìåðû
ìîùè èñêóññòâåííî ïîäàâàåìîãî â ñêâàæèíó íåðàñ[11, 12, 13].  óñëîâèÿõ çàãëóáëåííîé âîäîïîäà÷è
òâîðèòåëÿ, â êà÷åñòâå êîòîðîãî ÷àùå âñåãî èñïîëüñòðóÿ ðàñòâîðèòåëÿ ñ îïðåäåëåííîé íà÷àëüíîé ïëîòçóþòñÿ íåôòåïðîäóêòû, äîáèâàþòñÿ îòðàáîòêè êàíîñòüþ, ñêîðîñòüþ, íà÷àëüíûì èìïóëüñîì, ïîïàäàåò
ìåðû ñíèçó ââåðõ îòäåëüíûìè ñëîÿìè-ñòóïåíÿìè,
â çîíó íàñûùåííûõ ðàññîëîâ. Ïîä äåéñòâèåì íàïîð÷òî è ÿâëÿåòñÿ ïðèíöèïîì óïðàâëÿåìûõ ñïîñîáîâ
íûõ ñèë ñêâàæèíû ñòðóÿ ïðîíèêàåò íà íåêîòîðóþ
ïîäçåìíîãî ðàñòâîðåíèÿ [3, 4, 5].
ãëóáèíó, èçìåíÿÿ ïðè ýòîì íà÷àëüíóþ ïëîòíîñòü,
Ïðåäëàãàåìàÿ òåõíîëîãèÿ ñïîñîáà áåñïîñëîéèìïóëüñ âûíóæäåííûõ ñèë (Ì0 = πr02U02), òîðìîçèòñÿ
íîãî ðàñòâîðåíèÿ ïëàñòîâ êàìåííîé ñîëè îñíîâàïîä äåéñòâèåì ñèë òðåíèÿ ñ íàñûùåííûìè ðàññîëàíà íà ïðèíöèïèàëüíî íîâîì ïîäõîäå ôîðìîîáðàìè, íà êàêîé-òî ãëóáèíå ïîãðóæåíèÿ ðåâåðñèðóåò è
çîâàíèÿ ïîäçåìíîé âûðàáîòêè. Îñíîâíàÿ èäåÿ
íà÷èíàåò ïîäíèìàòüñÿ ââåðõ. Äâèæåíèå ðàñòâîðèòåñïîñîáà çàêëþ÷åíà â çàêîíîìåðíîñòè ñôåðè÷åëÿ ââåðõ îáóñëîâëåíî âûòàëêèâàþùèìè ñèëàìè (èëè
ñêîãî ôîðìîîáðàçîâàíèÿ êàìåðû è ðàçâèòèÿ êóñèëàìè ïëàâó÷åñòè), çàâèñÿùèõ îò ðàçíîñòè ïëîòíîïîëîîáðàçíîé ïîòîëî÷èíû ïðè ðàñòâîðåíèè âñåãî
ñòåé îêðóæàþùèõ ðàññîëîâ è ðàñòâîðèòåëÿ. Ïîäíèâûøåëåæàùåãî ïîðîäíîãî ìàññèâà ñîëè [6, 7].
ìàÿñü â ñòðàòèôèêàöèîííîé ñðåäå êàìåðû â çîíó
Òåõíîëîãèÿ ñïîñîáà èñêëþ÷àåò ïðè ýòîì ïîñëåäîðàññîëîâ ìåíüøåé êîíöåíòðàöèè, ïîòîê ðàñòâîðèòåâàòåëüíóþ îòðàáîòêó îòäåëüíûõ ñëîåâ-ñòóïåíåé
ëÿ òåðÿåò àêòèâíîñòü, óðàâíîâåøèâàåòñÿ îòíîñèçàäàííîé ìîùíîñòè, à òàêæå ïðèìåíåíèå íåðàñòåëüíî ðàññîëüíîé ñðåäû, çàâèñàåò, îñòàíàâëèâàåò
òâîðèòåëÿ (íåôòåïðîäóêòîâ) â óïðàâëåíèè ôîðäâèæåíèå ââåðõ è ðàññåèâàåòñÿ â îáúåìå êàìåðû.
ìîé âûðàáîòêè. Áåñïîñëîéíûé ñïîñîá âêëþ÷àåò
Äàëüíåéøåå ðàâíîâåñíîå äâèæåíèå ðàñòâîðèòåëÿ â
íàáîð èçâåñòíûõ òåõíîëîãè÷åñêèõ ïðèåìîâ, ðåæèðàññîëüíîé ñðåäå îáóñëîâëåíî ãðàâèòàöèîííîé êîíìîâ, ïàðàìåòðîâ, âñòðå÷àåìûõ ïðè ñòèõèéíîì ôîðâåêöèåé èëè äèôôóçèîííûì îáìåíîì.
ìîîáðàçîâàíèè êàìåð è óïðàâëÿåìûõ ñïîñîáàõ ïîäÍà÷àëüíîé çàäà÷åé èññëåäîâàíèé â çàìêíóòîì
çåìíîãî ðàñòâîðåíèÿ. Îïðåäåëåíèå îòäåëüíûõ òåõöèêëå öèðêóëÿöèè ïîòîêà ðàñòâîðèòåëÿ â ðàññîëüíîëîãè÷åñêèõ ïàðàìåòðîâ, âëèÿþùèõ íà ôîðìó âûíîé ñðåäå êàìåðû ÿâëÿëñÿ ôðàãìåíò äâèæåíèÿ
ðàáîòêè è îáùåå ïîñëåäîâàòåëüíîå îáúåäèíåíèå èõ
ñòðóè âíèç äî îñòàíîâêè, èëè ðåâåðñà, ò.å. îïðåäå[8,9], ñîãëàñíî óñëîâèÿì ñâîáîäíîãî ðàñòâîðåíèÿ
ëåíèå ãëóáèíû ïîãðóæåíèÿ ðàñòâîðèòåëÿ â çîíå íàâñåãî ïîðîäíîãî ìàññèâà ñîëè, äàåò îñíîâàíèå äëÿ
ñûùåííûõ ðàññîëîâ (ρñð = 1,2ã/ñì3) ñ ó÷åòîì èçìåíîâîé òåõíîëîãè÷åñêèé ñõåìû. Îäíàêî, ÷òîáû èñíåíèÿ ïëîòíîñòè ðàñòâîðèòåëÿ ïðè ýæåêöèè ñ îêðóêëþ÷èòü ïîâòîðåíèÿ íåäîñòàòêîâ ñòèõèéíîãî ôîðæàþùèìè ðàññîëàìè (ρð = 1,0÷1,2ã/ñì3).
ìîîáðàçîâàíèÿ âûðàáîòêè: îïåðåæàþùåãî ðàçâèòèÿ
Èññëåäîâàíèÿ ïðîâîäèëèñü íà îñíîâå ìàòåìàòèïîòîëî÷èíû, ïðèñòâîëüíîãî ðàçìûâà, íåäîðàáîòêó
÷åñêîãî àíàëèçà èçâåñòíûõ ðàíåå ôîðìóë îïðåäåëåäèàìåòðà êàìåðû è ò.ä., - íåîáõîäèìû èññëåäîâàíèÿ
íèÿ ãëóáèíû ïîãðóæåíèÿ ñëàáûõ ðàññîëîâ â çîíó
êàæäîãî òåõíîëîãè÷åñêîãî ïàðàìåòðà â îòäåëüíîñòè.
áîëåå íàñûùåííîé ñðåäû. Ïëîòíîñòü ñðåäû ðàññîëîâ
Äàííàÿ ðàáîòà âêëþ÷àåò èññëåäîâàíèÿ ðåæèìà çàêàìåðû ïðèíèìàëàñü ρñð = 1,2 ã/ñì3, à ïëîòíîñòü ðàñãëóáëåííîé âîäîïîäà÷è, ñâÿçàííîãî ñ äèíàìèêîé
òâîðèòåëÿ ñ ó÷åòîì ýæåêöèè ñ ðàññîëàìè êàìåðû
äâèæåíèÿ ðàñòâîðèòåëÿ â ðàññîëüíîé ñðåäå êàìåðû.
èçìåíÿëàñü â èíòåðâàëå ρð = 1,0÷1,2 ã/ñì3. Äëÿ óïðîùå ýòîì ñëó÷àå íåîáõîäèìî îïðåäåëèòü âëèÿíèå
íèÿ ðàñ÷åòîâ ââåäåí ïîêàçàòåëü ðàçíîñòè ïëîòíîñòåé
âñïëûâàþùåé àêòèâíîñòè ñòðóè íà ðàñòâîðåíèå ïîîêðóæàþùåé ñðåäû è ðàñòâîðèòåëÿ Δρ = (ρñð-ρð), ÷òî â
© Õ.fi. –χÈθÒ, 2003
o
&medek“ cnpm“j`-2003[ qelhm`p № 14
ñâîþ î÷åðåäü îáëåã÷àåò ñîïîñòàâëåíèå ðåçóëüòàòîâ
ðàñ÷åòîâ ïðè ïåðåìåííûõ çíà÷åíèÿõ ρñð è ρð îò Δρmin
äî Δρmax.
 ëèòåðàòóðå èçâåñòíû ôîðìóëû, îïðåäåëÿþùèå
ãëóáèíó ïîãðóæåíèÿ ïîòîêà [10, 12-16], îäíàêî óñëîâèÿ ïîãðóæåíèÿ íå îãîâîðåíû. Òàê, íàïðèìåð, â
ðàáîòå [16] äàåòñÿ ôîðìóëà ãëóáèíû ïîãðóæåíèÿ
ñòðóè áîëåå ëåãêîé æèäêîñòè â áîëåå ïëîòíóþ ñðåäó
ðàññîëîâ, ÷òî â êàêîé-òî ìåðå ñîîòâåòñòâóåò óñëîâèÿì çàãëóáëåííîé âîäîïîäà÷è (1) [16]:
Х
= bAr − m ⇒ X = 2r0 bAr − m ,
2r0
(1)
ãäå ã0 - ýêâèâàëåíòíûé ðàäèóñ âûõîäíîãî îòâåðñòèÿ
(ïðè ðàçìåðå òåõíîëîãè÷åñêèõ òðóá 245õ146 ñì) ã0 =
0,085 ì; b = 1,45÷1,73; m = 0,5÷0,53 – ýìïèðè÷åñêèå
êîýôôèöèåíòû;
Ar
–
êðèòåðèé
Àðõèìåäà
Ar =
2gr0
ρ
(1 − 0 ) ,
2
ρn
U0
ãäå g-ñêîðîñòü ñâîáîäíîãî ïà-
äåíèÿ, g = 9,81ì/ñ2 ; U0 - íà÷àëüíàÿ ñêîðîñòü èñõîäÿùåé ñòðóè, U0 = Q/S0; Q - ïðîèçâîäèòåëüíîñòü
ñêâàæèíû ì3/÷ (Qñêâ = 10÷80 ì3/÷); S0 - ïëîùàäü âûõîäíîãî îòâåðñòèÿ, S0 = 0,023 ì2; ρ 0 - òåêóùàÿ ïëîòíîñòü ðàñòâîðèòåëÿ, ñ ó÷åòîì ýæåêöèè ñ îêðóæàþùèìè ðàññîëàìè êàìåðû, ïðèíèìàþòñÿ çíà÷åíèÿ
1,0÷1,2 ã/ñì3; ρ n - ïëîòíîñòü ñðåäû ðàññîëîâ â óñëîâèÿõ çàãëóáëåííîé âîäîïîäà÷è ðàâíà 1,2 ã/ñì3.
Ðàñ÷åòû ôîðìóëû (1) îñíîâàíû íà êðèòåðèè Àðõèìåäà, ïîýòîìó ðàññìîòðèì çàâèñèìîñòè êðèòåðèÿ.
Êðèòåðèé Ar çàâèñèò îò ïðîèçâîäèòåëüíîñòè ñêâàæèíû è ðàçíèöû ñðåä ðàññîëüíîé ñðåäû è ðàñòâîðèòåëÿ (Δρ) Ïðè îäèíàêîâûõ òåõíîëîãè÷åñêèõ ïàðàìåòðàõ 2gro, So è Qñêâ = 10÷80 ì3/÷ íà ðèñ. 1 ïðåäñòàâëåíû çàâèñèìîñòè èçìåíåíèÿ êðèòåðèÿ Ar è àêòèâíîñòè ñòðóè ðàñòâîðèòåëÿ ñ ó÷åòîì ýæåêöèè â
ðàññîëüíîé ñðåäå. Ðàñ÷åòû ïîêàçàëè, ÷òî ÷åì ìåíüøå Qñêâ, è áîëüøå ðàçíèöà ïëîòíîñòíûõ ñðåä Δρ→0,1
ã/ñì3, òåì áîëüøå çíà÷åíèÿ Ar. Çàâèñèìîñòü Ar =
f(Qñêâ) ïî ñðåäíèì çíà÷åíèÿì Δρ ïðåäñòàâëåíû íà
ðèñ. 2. Óâåëè÷åíèå ïëîòíîñòè ñðåäû ðàññîëîâ ïðè
îäèíàêîâîì ïîêàçàòåëå Δρ ïðèâîäèò ê íåêîòîðîìó
ñíèæåíèþ àêòèâíîñòè ïîãðóæåíèÿ ñòðóè, îäíàêî, ñ
óâåëè÷åíèåì ïðîèçâîäèòåëüíîñòè ñêâàæèíû äî 40
ì3/÷àñ è âûøå ðàñõîæäåíèÿ çàìåòíî óìåíüøàþòñÿ è
èìè ìîæíî ïðåíåáðå÷ü (ðèñ. 3 à,b). Ðàñ÷åòû ïîêàçàëè, ÷òî ïðè äîñòèæåíèè Qñêâ = 50ì3/÷ çíà÷åíèÿ êðèòåðèÿ Ar ìàëû è íå ïðåâûøàþò 1, ò.å. Ar<<1: Armax =
0,75 ïðè Δρ = 0,2 ã/ñì3 è Armin = 0,044 ïðè Δρ =
0,01ã/ñì3. Óâåëè÷åíèå ïðîèçâîäèòåëüíîñòè äî 80
ì3/÷ ïðèâîäèò ê äàëüíåéøåìó ñíèæåíèþ çíà÷åíèé
êðèòåðèÿ Ar:
Qñêâ. = 50 ì3/÷ ïðè Δρ = 0,01 ã/ñì3 Armin = 0,044÷0,038
Δρ = 0,2 ã/ñì3 Armax = 0,759
3
Qñêâ. = 60 ì /÷ ïðè Δρ = 0,01ã/ñì3 Armin =
0,0308÷0,026
Δρ = 0,2 ã/ñì3 Armax = 0,527
Qñêâ. = 70 ì3/÷ ïðè Δρ = 0,01 ã/ñì3 Armin =
0,0226÷0,019
Δρ = 0,2 ã/ñì3 Armax = 0,338
3
Qñêâ. = 80 ì /÷ ïðè Δρ = 0,01 ã/ñì3 Armin = 0,017÷0,015
Δρ = 0,2 ã/ñì3 Armax = 0,29
Ðåçóëüòàòû ðàñ÷åòîâ ïîêàçûâàþò, ÷òî âëèÿíèå
êðèòåðèÿ Ar íà ïîãðóæàåìóþ ñòðóþ â ñðåäå íàñûùåííûõ ðàññîëîâ âîçìîæíî ëèøü ïðè íåáîëüøèõ
ñêîðîñòÿõ èñòå÷åíèÿ æèäêîñòè, êîãäà U0 = 0,12÷0,48
ì/ñ, ÷òî ñîîòâåòñòâóåò Qñêâ .= 10÷40 ì3/÷. Äàëåå, ïðè
çíà÷åíèÿõ Qñêâ. = 50÷80 ì3/÷, íàïðàâëåííîå äâèæåíèå ïîòîêà õàðàêòåðèçóåòñÿ íàèáîëüøåé ãëóáèíîé
ïîãðóæåíèÿ è ïîëíûì ïåðåìåøèâàíèåì â ðàññîëüíîé ñðåäå. Â ðåçóëüòàòå ïðèîáðåòåíèÿ ïîâûøåííîé
ïëîòíîñòè, ðàñòâîðèòåëü òåðÿåò âñïëûâàþùóþ àêòèâíîñòü, è çíà÷åíèÿ êðèòåðèÿ Ar óìåíüøàþòñÿ.
Îïðåäåëåíèå ãëóáèíû ïîãðóæåíèÿ ñòðóè ðàñòâîðèòåëÿ ïî ô-ëå (1) îãðàíè÷èâàëîñü âëèÿíèåì êðèòåðèÿ Ar â äèàïàçîíå Qñêâ. = 10÷40 ì3/÷ è âëèÿíèåì ýìïèðè÷åñêèõ êîýôôèöèåíòîâ m, b. Ðàñ÷åòû ïîêàçàëè,
÷òî çíà÷åíèÿ êðèòåðèÿ Ar âîçðàñòàþò ïðè m = -0,5 è
b = 1,75, è óìåíüøàþòñÿ ïðè m = -0,53 è b = 1,45.
Ðèñ. 1. Çàâèñèìîñòü êðèòåðèÿ Àr îò ïðîèçâîäèòåëüíîñòè
ñêâàæèíû è ýæåêöèè ðàñòâîðèòåëÿ â ðàññîëüíîé ñðåäå Àr
= f(Qñêâ; Δρ)
Ðèñ. 2. Çàâèñèìîñòè ñðåäíèõ çíà÷åíèé Ar îòQñêâ è Δρ
Ðèñ. 3. Çàâèñèìîñòü êðèòåðèÿ Ar îò ïëîòíîñòè ñðåäû ðàññîëîâ
&medek“ cnpm“j`-2003[ qelhm`p № 14
Ðèñ. 4. Ãëóáèíà ïîãðóæåíèÿ ñòðóè ðàñòâîðèòåëÿ ïðè Q =
10-40 ì3/÷
Ðèñ. 5. Çàâèñèìîñòè ãëóáèíû ïîãðóæåíèÿ ñòðóè ðàñòâîðèòåëÿ îò ïðîèçâîäèòåëüíîñòè ñêâàæèíû
Ðèñ. 6. Ãëóáèíà ïîãðóæåíèÿ ðàñòâîðèòåëÿ â çîíó íàñûùåííûõ ðàññîëîâ ñ ó÷åòîì ýæåêöèè ñòðóè è ïðîèçâîäèòåëüíîñòè ñêâàæèíû
ìèêà äâèæåíèÿ ðàñòâîðèòåëÿ â ñðåäå íàñûùåííûõ
ðàññîëîâ òàêæå çàâèñèò îò ñêîðîñòè ïîäàâàåìîãî
ðàñòâîðèòåëÿ íà âûõîäå èç ñêâàæèíû èëè Qñêâ. Ïðè
ìàëîé Qñêâ = 10 ì3/÷ ñòðóÿ, íå ïîãðóæàÿñü âûòàëêèâàåòñÿ ïëîòíûìè ðàññîëàìè, ñîõðàíÿÿ ïðè ýòîì Δρ
è âñïëûâàþùóþ àêòèâíîñòü. Äàëüíåéøåå óâåëè÷åíèå
Qñêâ ñâÿçàíî ñ óâåëè÷åíèåì äàâëåíèÿ ïîäà÷è ðàñòâîðèòåëÿ è èìïóëüñà íà÷àëüíûõ ñèë. Ïðè ýòîì ñòðóÿ
ïîä íàïîðîì äàâëåíèÿ ïðîíèêàåò íà íåêîòîðóþ ãëóáèíó, ýæåêòèðóåò ñ îêðóæàþùèìè ðàññîëàìè, óâåëè÷èâàÿ ïëîòíîñòü, òåðÿåò âñïëûâàþùóþ àêòèâíîñòü, è çíà÷åíèÿ êðèòåðèÿ ïðè ýòîì óìåíüøàþòñÿ.
Îïðåäåëåíà îáëàñòü äåéñòâèÿ êðèòåðèÿ Ar: 40
ì3/÷≥Ar>10 ì3/÷. Êðèòåðèé Ar íåîáõîäèìî ó÷èòûâàòü
ïðè íåáîëüøèõ ñêîðîñòÿõ äâèæåíèÿ æèäêîñòè U0 =
0,12÷0,48 ì/ñ. Ïðè ñêîðîñòÿõ U0>>0,48 çíà÷åíèÿ
Ar<<1, âëèÿíèå åãî íå çíà÷èòåëüíî è ñ óâåëè÷åíèåì
Qñêâ èñ÷åçàåò, ÷òî ãîâîðèò î ïîëíîì ïåðåìåøèâàíèè
ðàñòâîðèòåëÿ â çîíå íàñûùåííûõ ðàññîëîâ.
Ñëåäóþùåé ïî îïðåäåëåíèþ ãëóáèíû ïîãðóæåíèÿ
ðàñòâîðèòåëÿ ÿâëÿëàñü îöåíî÷íàÿ çàâèñèìîñòü (2) [17]:
Õ=
Ìàêñèìàëüíàÿ ãëóáèíà ïîãðóæåíèÿ ñòðóè ïðè Qñêâ. =
10÷50 ì3/÷ è Δρmax = 0,2 ã/ñì3 c ãðàíè÷íûìè óñëîâèÿìè m = -0,5 è b = 1,45, m = -0,53 è b = 1,73, èìååò
ñëåäóþùèå çíà÷åíèÿ::
Q = 10 ì3/÷ Õmax = 106÷63,6 ì; Q = 50 ì3/÷
Õmax = 0,17÷0,14 ì;
Q = 20 ì3/÷ Õmax = 6,6÷4,6 ì; Q = 60 ì3/÷
Õmax = 0,087÷0,068 ì;
Q = 30 ì3/÷ Õmax = 1,3÷1,0 ì; Q = 70 ì3/÷
Õmax = 0,049÷0,037 ì;
Q = 40 ì3/÷ Õmax = 0,4÷0,3 ì; Q = 80 ì3/÷
Õmax = 0,029÷0,0216 ì.
Ðàñ÷åòû ôîðìóëû (1) ïîêàçûâàþò, ÷òî ãëóáèíà
ïîãðóæåíèÿ (Õ) çàâèñèò îò ðàçíîñòè ïëîòíîñòíîé
ñðåäû ðàññîëà è ðàñòâîðèòåëÿ (Δρ) è ïðîèçâîäèòåëüíîñòè ñêâàæèíû (Qñêâ) ðèñ. 4. Íàèáîëüøàÿ ãëóáèíà ïîãðóæåíèÿ ñîîòâåòñòâóåò ìåíüøåé Qñêâ. Ðåçóëüòàòû ðàñ÷åòîâ ô-ëû (1) ïðîòèâîðå÷àò ôèçè÷åñêîìó ñìûñëó è ïðàêòèêå ïîäçåìíîãî ðàñòâîðåíèÿ,
ïîýòîìó ô-ëà (1) äëÿ îïðåäåëåíèÿ ãëóáèíû ïîãðóæåíèÿ ðàñòâîðèòåëÿ â ñðåäå íàñûùåííûõ ðàññîëîâ
íå ïðèìåíèìà. Îäíàêî ðàñ÷åòû êðèòåðèÿ Ar ïîêàçàëè ñëåäóþùèå çàâèñèìîñòè. Âñïëûâàþùàÿ àêòèâíîñòü ñòðóè ñâÿçàíà ñ ðàçíîñòüþ ïëîòíîñòè ñðåä
ðàññîëîâ è ïîñòóïàþùåãî ðàñòâîðèòåëÿ (Δρ). ×åì
áîëüøå Δρ→0,2ã/ñì3, òåì áîëüøå êðèòåðèé Ar. Äèíà-
3U 02 1 / 3 ⎤
r0 ⎡
(
1
+
) − 1⎥ ,
⎢
0,22 ⎣
Pr0
⎦
(2)
ãäå r0 - ýêâèâàëåíòíûé ðàäèóñ âûõîäíîãî îòâåðñòèÿ
âîäîïîäàþùåé êîëîííû, 0,085 ì; U0 - íà÷àëüíàÿ ñêîðîñòü ïîòîêà ðàñòâîðèòåëÿ íà âûõîäå èç êîëîíí U0 =
Q/S0; Q - ïðîèçâîäèòåëüíîñòü ñêâàæèíû, 10-80 ì3/÷;
S0 - ïëîùàäü âûõîäíîãî îòâåðñòèÿ, 0,023 ì2;
P = 60,13
1 − ρm / ρn
0,264 + ρ m / ρ n
;
ãäå ρ m - òåêóùàÿ ïëîòíîñòü ðàñòâîðèòåëÿ, ïðè
ýæåêöèè ñòðóè ñ îêðóæàþùèìè ðàññîëàìè ïðèíèìàþòñÿ çíà÷åíèÿ 1,0÷1,2 ã/ñì3; ρ n - ïëîòíîñòü ñðåäû ðàññîëîâ ñ ó÷åòîì óñëîâèé çàãëóáëåííîé âîäîïîäà÷è 1,2 ã/ñì3; Çàâèñèìîñòü êîýôôèöèåíòà Ð ïðè
Δρmax = 0,2 ã/ñì3 è Δρmin = 0,01 ã/ñì3 ïðåäñòàâëåíà
îáëàñòüþ äîïóñòèìûõ çíà÷åíèé 0,4≤Ð≤9,133. Èç ëèòåðàòóðû [17] íå ïîíÿòåí ôèçè÷åñêèé ñìûñë êîýô-òà
Ð, îäíàêî, ïîäîáíî êðèòåðèþ Ar , îí çàâèñèò îò ïëîòíîñòè ñðåäû è ðàñòâîðèòåëÿ, íî íå ñâÿçàí ñ òåõíîëîãè÷åñêèìè ïàðàìåòðàìè (N). Ïî ñðåäíåìó çíà÷åíèþ ïðè
Qñêâ = 10÷80 ì3/÷ Nñð = 58 è ÿâëÿåòñÿ áëèçêèì ïî çíà÷åíèþ 60,13 êîýôôèöèåíòà ô-ëû Ð (2).
Íà ðèñ. 5 ïðåäñòàâëåíû ðàñ÷åòû ãëóáèíû ïîãðóæåíèÿ ðàñòâîðèòåëÿ ñ ó÷åòîì ýæåêöèè â ñðåäå ðàññîëîâ êàìåðû è Qñêâ = 10÷80 ì3/÷. Ãëóáèíà ïîãðóæåíèÿ ðàñòâîðèòåëÿ çàâèñèò îò Δρ è Qñêâ. ×åì áîëüøå
Qñêâ è ìåíüøå Δρ→0,01 ã/ñì3, òåì áîëüøå ãëóáèíà
ïîãðóæåíèÿ. Ìàêñèìàëüíàÿ ãëóáèíà ïîãðóæåíèÿ ñîîòâåòñòâóåò íàèáîëüøåé Qñêâ = 80 ì3/÷ è íàèìåíüøåìó çíà÷åíèþ Δρ→0,01ã/ñì3, êîãäà ïëîòíîñòü ðàñòâî-
&medek“ cnpm“j`-2003[ qelhm`p № 14
Ðèñ. 7. Çàâèñèìîñòü ãëóáèíû ïîãðóæåíèÿ ðàñòâîðèòåëÿ îò
ïðîèçâîäèòåëüíîñòè ñêâàæèíû
Ðèñ. 8. Ñõåìà ëîãèêî-ìàòåìàòè÷åñêîé ìîäåëè äèíàìèêè
äâèæåíèÿ âåðòèêàëüíî ïîäàâàåìîãî ïîòîêà â ïëîòíîé ñðåäå ðàññîëà
ðèòåëÿ è ñðåäû ðàññîëîâ êàìåðû ÿâëÿþòñÿ ïî÷òè
îäíîðîäíûìè ñðåäàìè, è ðàâíà Õ = 138,8÷394,8 ì
ñîîòâåòñòâåííî Δρ = 0,2÷0,01 ã/ñì3. Îäíàêî, îöåíî÷íàÿ çàâèñèìîñòü (2) íå èìååò ñîîòâåòñòâóþùåãî íàèìåíîâàíèÿ – ìåòðû, à ãëóáèíà ïîãðóæåíèÿ ðàñòâîðèòåëÿ íà 394,8 ì âåñüìà ñîìíèòåëüíà.
 ðàáîòå [18] ïðåäëàãàåòñÿ óðàâíåíèå (3) ñ óòî÷íåííûì êîýôôèöèåíòîì ïðîïîðöèîíàëüíîñòè ïðèìåíèòåëüíî ê çàäà÷àì ïîäçåìíîãî ðàñòâîðåíèÿ:
Z m 2.46U 0
−
r0 ( g 01 r0 )1 / 2
⇒ Zm =
r0 2,46U 0
( g 01 r0 )1 / 2
,
(3)
ãäå r0 - ðàäèóñ èñòî÷íèêà (ò.å. âîäîïîäàþùåé êîëîííû 0,085 ì); U0 – ñêîðîñòü ñòðóè ðàñòâîðèòåëÿ íà
âûõîäå èç èñòî÷íèêà, ì/÷ U0 = Q/Πr2 = Q/S; Q - ïðîèçâîäèòåëüíîñòü ñêâàæèíû 10÷80 ì3/÷; S - ïëîùàäü
âûõîäíîãî îòâåðñòèÿ 0,023 ì2; g0!=g
ρ∞ − ρ0
, ãäå gρ∞
óñêîðåíèå ñâîáîäíîãî ïàäåíèÿ 9,81ì/ñ2; 981 ì/ñ2
Ïðèìåíèì ôîðìóëó (3) â óñëîâèÿõ çàãëóáëåííîé
âîäîïîäà÷è, êîãäà ρ ∞ = 1,2 ã/ñì3 ïðèíèìàåòñÿ äëÿ
ñðåäû íàñûùåííûõ ðàññîëîâ è òåêóùàÿ ïëîòíîñòü
ðàñòâîðèòåëÿ ρ î = 1,0÷1,2 ã/ñì3 ñ ó÷åòîì ýæåêöèè
îêðóæàþùèõ ðàññîëîâ. Ðåçóëüòàòû ðàñ÷åòîâ ïîêàçàëè çàâèñèìîñòü Qñêâ îò ãëóáèíû ïîãðóæåíèÿ, ÷åì
áîëüøå Qñêâ, òåì áîëüøå Zm; è îáðàòíóþ çàâèñèìîñòü
ãëóáèíû ïîãðóæåíèÿ îò Δρ. Ïðè íàñûùåíèè ðàñòâîðèòåëÿ äî ïëîòíîñòè ðàññîëüíîé ñðåäû ãëóáèíà ïîãðóæåíèÿ âîçðàñòàåò. Çíà÷åíèÿ ìàêñèìàëüíîé ãëóáèíû
ïîãðóæåíèÿ äîñòèãàþò òîëüêî 2,42 ì ïðè ρ î = 1,19
ã/ñì3 è ρ ∞ = 1,2 ã/ñì3 èëè Δρ = 0,01 ã/ñì3 (ðèñ. 6) è íå
ñðàâíèìû ñ ðåçóëüòàòàìè ïðåäûäóùèõ ðàñ÷åòîâ.
Ñëåäóþùàÿ ôîðìóëà ïî îïðåäåëåíèþ ãëóáèíû
ïîãðóæåíèÿ ðàñòâîðèòåëÿ (4) âûâåäåíà íà îñíîâå
êîððåëÿöèîííîãî àíàëèçà ðåçóëüòàòîâ ãèäðîëîêà-
òîðíûõ ñúåìîê ôîðì êàìåðû ïðè çàãëóáëåííîé âîäîïîäà÷å [10]:
h = 0,1Q+1,37
(4)
Ôîðìóëà (4) ïðèìåíèìà ê ïðîèçâîäèòåëüíîñòè
ñêâàæèí îò 20 äî 80 ì3/÷ è îïðåäåëÿåò ìàêñèìàëüíîå âëèÿíèå ðàñòâîðèòåëÿ íà ðàñòâîðåíèå ñòåíîê
âûðàáîòêè íèæå áàøìàêîâ ðàáî÷èõ êîëîíí.
Äàííàÿ êàðòèíà ñîîòâåòñòâóåò è ìàêñèìàëüíîé
ãëóáèíå ïîãðóæåíèÿ ðàñòâîðèòåëÿ â çîíå òÿæåëûõ
ðàññîëîâ, ïîñêîëüêó â çîíå êîíäèöèîííûõ ðàññîëîâ
ó÷òåíà âåðîÿòíîñòü íå òîëüêî ìàêñèìàëüíîãî ãîðèçîíòàëüíîãî ðàñòâîðåíèÿ ñòåíîê êàìåðû, íî è îãðàíè÷åíî âåðòèêàëüíîå äâèæåíèå ðàñòâîðèòåëÿ âíèç
ïðè çàäàííîé ïðîèçâîäèòåëüíîñòè. Ô-ëà (4) èñêëþ÷àåò êðèòåðèé Ar, ñèëû ïëàâó÷åñòè ïîòîêîâ, çàâèñèìûõ îò ðàçíîñòè ñðåä ðàññîëîâ è ðàñòâîðèòåëÿ (Δρ)
è ó÷èòûâàåò òîëüêî ïðîèçâîäèòåëüíîñòü ñêâàæèíû.
Ðåçóëüòàòû ðàñ÷åòîâ ïðåäñòàâëåíû íà ðèñ 7 è
ïîêàçûâàþò, ÷òî ãëóáèíà ïîãðóæåíèÿ, ïðè êîòîðîé
îñóùåñòâëÿåòñÿ íåçíà÷èòåëüíîå ãîðèçîíòàëüíîå
ðàñòâîðåíèå ñòåíîê âûðàáîòêè, ðàâíà hmax = 9,37 ì
ïðè Qñêâ = 80 ì3/÷; è hmin= 2,37 ì ñîîòâåòñòâåííî ïðè
Qñêâ = 10 ì3/÷. Îäíàêî ô-ëà (4) íå èìååò ñîîòâåòñòâóþùåãî íàèìåíîâàíèÿ – ìåòðû, ÷òî ÿâëÿåòñÿ íå
êîððåêòíûì äëÿ ìàòåìàòè÷åñêèõ ðàñ÷åòîâ.
Ðàñ÷åòû ôîðìóë (1-4) [10; 12-18] ïî îïðåäåëåíèþ ãëóáèíû ïîãðóæåíèÿ ðàñòâîðèòåëÿ ïðèìåíèòåëüíî ê óñëîâèÿì çàãëóáëåííîé âîäîïîäà÷è ïîêàçàëè âåñüìà íåîäíîçíà÷íûå ðåçóëüòàòû. Ìàêñèìàëüíàÿ
ãëóáèíà ïîãðóæåíèÿ ðàñòâîðèòåëÿ êîëåáëåòñÿ îò
2,42 äî 394,8 ì. Òàêîé ðàçáðîñ çíà÷åíèé ãëóáèíû
ïîãðóæåíèÿ íå ñîïîñòàâèì. Îäíàêî, íà îñíîâå ïîëó÷åííûõ ðàñ÷åòîâ ïîëó÷åíû ñëåäóþùèå ðåçóëüòàòû.
Ãëóáèíà ïîãðóæåíèÿ ðàñòâîðèòåëÿ çàâèñèò îò
ðàçíîñòè ïëîòíîñòíûõ ñðåä ðàññîëüíîé ñðåäû êàìåðû
è ðàñòâîðèòåëÿ. Ïðè Δρ→0,2 ã/ñì3, êîãäà ρñð = 1,2 ã/ñì3
è ρð = 1,0 ã/ñì3, ãëóáèíà ïîãðóæåíèÿ ìèíèìàëüíà, ÷òî
îáúÿñíÿåòñÿ áîëüøîé âñïëûâàþùåé àêòèâíîñòüþ ñòðóè
è áîëüøèìè çíà÷åíèÿìè êðèòåðèÿ Ar.
Óâåëè÷åíèå Qñêâ→80 ì3/÷, îáóñëîâëåííîå ñèëàìè
äàâëåíèÿ ñêâàæèíû, ïðèâîäèò ê óâåëè÷åíèþ ãëóáèíû ïîãðóæåíèÿ ðàñòâîðèòåëÿ è âûíóæäåííîìó ïåðåìåøèâàíèþ ïîòîêà ðàñòâîðèòåëÿ â êàìåðå. Ïëîòíîñòü ðàñòâîðèòåëÿ ïðè ýæåêöèè â ðàññîëüíîé ñðåäå
óâåëè÷èâàåòñÿ, òåðÿåò âñïëûâàþùóþ àêòèâíîñòü, è
çíà÷åíèÿ êðèòåðèÿ Ar óìåíüøàþòñÿ.
Îïðåäåëåíèå ãðàíè÷íûõ çíà÷åíèé êðèòåðèÿ Ar
40≥Ar>10 ì3/÷ òðåáóåò äëÿ óñëîâèé çàãëóáëåííîé
âîäîïîäà÷è, êîãäà ρñð = 1,2 ã/ñì3, ρð = 1,0÷1,2 ã/ñì3 è
Qñêâ = 10÷80 ì3/÷, íåñêîëüêî ôîðìóë ïî îïðåäåëåíèþ ãëóáèíû ïîãðóæåíèÿ, êîòîðûå ìîãëè áû âåðíî
îòðàæàòü ôèçè÷åñêóþ ñóùíîñòü ïðîöåññîâ äâèæåíèÿ ðàñòâîðèòåëÿ. Îäíà èç ôîðìóë äîëæíà ó÷èòûâàòü êðèòåðèé Ar è òåêóùèå èçìåíåíèÿ ïëîòíîñòè
ðàññîëüíîé ñðåäû è ðàñòâîðèòåëÿ Δρ, à òàêæå Qñêâ =
10÷40 ì3/÷, à äðóãàÿ – òåõíîëîãè÷åñêèå ïàðàìåòðû
ñêâàæèíû è Qñêâ = 50÷80 ì3/÷.
&medek“ cnpm“j`-2003[ qelhm`p № 14
Íà îñíîâå ðàñ÷åòíûõ äàííûõ êðèòåðèÿ Ar è ïîëó÷åííîé ãëóáèíû ïîãðóæåíèÿ ðàñòâîðèòåëÿ (ïî ô-ëå
4), ñîîòâåòñòâóþùåé ãèäðîëîêàòîðíûì ñúåìêàì íàòóðíûõ êàìåð [10], ïîñòðîåíà ïðåäïîëàãàåìàÿ ëîãè-
êî-ìàòåìàòè÷åñêàÿ ìîäåëü, êîòîðàÿ îáúÿñíÿåò ôèçè÷åñêèé ñìûñë âñïëûâàþùåé àêòèâíîñòè âåðòèêàëüíî íàïðàâëåííîé ñòðóè ðàñòâîðèòåëÿ (ðèñ. 8).
– œ » – Œ À»“≈—¿“”—¤
1. Òåõíèêî-ýêîíîìè÷åñêàÿ îöåíêà
èçâëå÷åíèÿ ïîëåçíûõ èñêîïàåìûõ èç
íåäð. - Ì.: Íåäðà, 1974.
2. Áîáêî Ï.Ñ. Ðàñ÷åò òåõíîëîãè÷åñêèõ ïàðàìåòðîâ ïîñëîéíîãî âûùåëà÷èâàíèÿ
ñîëÿíûõ
çàëåæåé
//Êàëèéíàÿ ïðîìûøëåííîñòü. - Ì.:
ÂÍÈÈÒÝÕÈÌ, 1974, âûï.6, ñ. 70.
3. Áîáêî Ï.Ñ. Ìåòîäû ïîäçåìíîãî
âûùåëà÷èâàíèÿ
ñîëÿíûõ
çàëåæåé.//Ãåîëîãèÿ è ãèäðîãåîëîãèÿ ñîëÿíûõ ìåñòîðîæäåíèé. - Ë.: Íåäðà,
ÂÍÈÈÃ, âûï.56, ñ. 146-176, 1972.
4. Ëàíäìàí Þ.Ð., Êîð÷àãèíà Å.Í.,
Ðó÷íîâà À.Ã. Ìîäåëèðîâàíèå ïðîöåññà âûùåëà÷èâàíèÿ ñ çàãëóáëåííîé
âîäîïîäà÷åé.//Ðàçðàáîòêà ñîëåé ñïîñîáîì ïîäçåìíîãî âûùåëà÷èâàíèÿ. Ë.: òð.ÂÍÈÈÃ, âûï.76, 1975, ñ. 36-45.
5. Ïàòðóíîâà Ë.Í. è äð. Ñïîñîá
êîíâåêòèâíîãî ñìåøàíèÿ ñ çàãëóáëåííîé âîäîïîäà÷åé. À.ñ, N1113521
ÑÑÑÐ, âûï.6, ñ.1-3.
6. Öàðåíêîâ Þ.Â. Çàêîíîìåðíîñòü
ðàçâèòèÿ ïîïåðå÷íîãî ñå÷åíèÿ òîííåëüíîé êàìåðû, ñîçäàâàåìîé â êàìåííîé ñîëè //Òðàíñïîðò è õðàíåíèå
íåôòåïðîäóêòîâ è óãëåâîäîðîäíîãî
ñûðüÿ. - Ì.: 1981, N4, ñ. 8.
7. Àéðóíè À.Ò., Ñìàéëüñ Í.Þ. Ìåòîäè÷åñêèå ðåêîìåíäàöèè ïî ìîäåëèðîâàíèþ ïðîöåññà ñîçäàíèÿ êàìåð ðàñòâîðåíèåì ñîëåé áåñïîñëîéíûì ñïîñîáîì. - Ì.: ÈÏÊÎÍ ÐÀÍ ÑÑÑÐ, 1985.
8. Ñìàéëüñ Í.Þ. Ðàçðàáîòêà ñïîñîáà áåñïîñëîéíîãî ðàñòâîðåíèÿ ãàçîíîñíûõ ïëàñòîâ êàìåííîé ñîëè.àâòîðåô. äèññ. íà ñîèñê. ó÷. ñòåï. êàíä.
òåõí. íàóê. - Ì.: ÈÏÊÎÍ ÐÀÍ, 1991.
9. Ñìàéëüñ Í.Þ. Çàêîíîìåðíîñòè
ôîðìîîáðàçîâàíèÿ ïîäçåìíîé êàìåðû ïðè ïîäçåìíîì ðàñòâîðåíèè ïëàñòîâ êàìåííîé ñîëè //Ãîðíûé èíôîðìàöèîííî-àíàëèòè÷åñêèé áþëëåòåíü. - Ì.: òð. ÌÃÃÓ, 2001, ñ. 163.
10. Àáäååâ Ý.Ì. Îñîáåííîñòè ôîðìèðîâàíèÿ è ìàðêøåéäåðñêîãî êîíòðîëÿ êàìåð ñ çàãëóáëåííîé âîäîïîäà÷åé
//Òåîðèÿ è ïðàêòèêà ïîäçåìíîãî âûùåëà÷èâàíèÿ ñîëÿíûõ ìåñòîðîæäåíèé. Ë.: òð. ÂÍÈÈÃ, 1984, ñ. 80.
11. Êàðàòûãèí Â.Ï., Êóëáàíîâ À.Â.,
Ïóñòûëüíèêîâ Ë.Í. è äð. Ïîäçåìíîå
ðàñòâîðåíèå ñîëÿíûõ çàëåæåé (ïðîáëåìû. ìîäåëèðîâàíèå, óïðàâëåíèå) Ñ.Ï.: Ãèäðîìåòåîèçäàò, 1994 ñ. 37-62.
12. Êîð÷àãèíà Å.Í. Ðàñ÷åò ïàðàìåòðîâ îáëàñòè çàãëóáëåííîé âîäî-
ïîäà÷è â ïîäçåìíîé êàìåðå ðàñòâîðåíèÿ ñîëåé//Òåõíîëîãèÿ ðàçðàáîòêè
ñîëÿíûõ ìåñòîðîæäåíèé ïîäçåìíûì
âûùåëà÷èâàíèåì. - Ë.: òð.ÂÍÈÈÃ,
1981, ñ. 21-29.
13. Êîð÷àãèíà Å.Í., Êîíîíîâà À.Ã.
Ìîäåëèðîâàíèå ðàçìûâà çóìïôîâ ðàññîëüíûõ êàìåð//Òîðèÿ è ïðàêòèêà ïîäçåìíîãî âûùåëà÷èâàíèÿ ñîëÿíûõ ìåñòîðîæäåíèé.-Ë.: Òð.ÂÍÈÈÃ, 1984, ñ.
68-75.
14. Àáóçîâà Ô.Ô., Àáðàìçîí Ë.Ñ.
Èçâ. ÀÍ ÑÑÑÐ ñåð. Ìåõàíèêè è ìàøèíîñòðîåíèÿ. 1063,25.
15. Ãóáêèí Â.Å. Òðóäû ÍÈÈ ïî
òðàíñïîðòó è õðàíåíèþ íåôòè è íåôòåïðîäóêòîâ. 1969, âûï. 6.
16. Turner I.S. Annual Review of fluid mech. 1969, vol 1, p 29-44.
17. Äàâûäîâ Á.È., Øàõîâ Þ.À. Î
çàêîíîìåðíîñòÿõ âëèÿíèÿ ïîãðóæåíèÿ âîäîïîäà÷è íà ôîðìèðîâàíèå
êîíöåíòðàöèîííîé ñòðàòèôèêàöèè â
êàìåðàõ ïîäçåìíîãî âûùåëà÷èâàíèÿ.
- Ë.: ËÒÈ, 1974, 22 ñ. (Ðóê.äåï. â ËÒÈ,
N448/75).
18. Morton B.R. Forced plumes/Fluid Màch, 1959, v.5, p. 151-163.
Œ—Œ“ Œ Œ¡ ¿¬“Œ—¿’
Ñìàéëüñ Í.Þ. – êàíäèäàò òåõíè÷åñêèõ íàóê, íàó÷íûé ñîòðóäíèê, ÈÏÊÎÍ ÐÀÍ
© ¬.». –‡ÎÓıËÌ, ¿.–. ’ðÛ΂,
ƒ.¬. ‡Ì‡ÎËÌ, 2003
”ƒ 622.767.52
¬.». –‡ÎÓıËÌ, ¿.–. ’ðÛ΂, ƒ.¬. ‡Ì‡ÎËÌ
Œœ—≈ƒ≈À≈Õ»≈ Œœ“»Ã¿À‹ÕŒ… –“≈œ≈Õ»
»«¬À≈◊≈Õ»fl Œ–¿ƒ ¿ œ—» –Œ«ƒ¿Õ»»
œŒƒ«≈ÃÕ¤’ —≈«≈—¬”¿—Œ¬
Õ¿ ¬ŒÀ√Œ√—¿ƒ– ŒÃ œ’√
c
îðíî-ãåîëîãè÷åñêèå óñëîâèÿ
çàëåãàíèÿ ñîëåíîñíûõ îòëîæåíèé îïðåäåëÿþò âûáîð òåõíîëîãè÷åñêîé ñõåìû è ïàðàìåòðû
ñòðîèòåëüñòâà ïîäçåìíûõ ðåçåðâóàðîâ ÷åðåç ñêâàæèíû. Íåäîñòàòî÷íûé ó÷åò ýòèõ óñëîâèé ïðèâîäèò ê ñíèæåíèþ âîçìîæíîãî ïî-
ëåçíîãî îáúåìà ïîäçåìíîãî ðåçåðâóàðà è ðîñòó çàòðàò íà åãî
ñòðîèòåëüñòâî.
Ê
îïðåäåëÿþùèì
ãîðíîãåîëîãè÷åñêèì ôàêòîðàì îòíîñèòñÿ ñîäåðæàíèå íåðàñòâîðèìûõ âêëþ÷åíèé â êàìåííîé ñîëè
è ìîùíîñòü ñîëåíîãî èíòåðâàëà,
â êîòîðîì ïðîèçâîäèòñÿ ñòðîèòåëüñòâî ïîäçåìíîãî ðåçåðâóàðà.
 èíòåðâàëå ñòðîèòåëüñòâà
Åðåâàíñêîãî ïîäçåìíîãî õðàíèëèùà ãàçà (îêîëî 165 ì) ñîäåðæàíèå ãëèíèñòûõ íåðàñòâîðèìûõ
âêëþ÷åíèé èçìåíÿåòñÿ îò 13,8 äî
26,1% (â ñðåäíåì 16,1%). Ïðèìåíÿåìàÿ òåõíîëîãèÿ ðàçìûâà ïðåäóñìàòðèâàëà îñòàâëåíèå îñàäêà
Скачать