1 /0 &1"' , $ 234 . ,5 $ !6&7 X1-010 (2002/07/14) [email protected] ' R ) = 8 ( * 4& d # A X e w 2 * $ 7,PT * 7,* _q 0 8 U A , 8 _ (x, y) u , $ * e w 2 (u, v) X e w 2 A * x = a cosh u cos v, DP ( * 0 ≤ u < ∞ u = const 6 * X v = const 6 * v (x = ±a, y = 0) 6 X 6 y = a sinh u sin v, (u, v) + )! D* q( # ! u = const 6 1 0≤v≤π * C a - $ −∞ < u < ∞ 2π 4* q ( q q/ % &' ,w2 6 -$ q(* v = const qq/6 RS 7 ds2 := dx2 + dy 2 , = D2 (u, v)(du2 + dv 2 ), 2 - $ D2 (u, v) := a2 (cosh2 u − cos2 v), = a2 (sinh2 u + sin2 v). ( ' Y09 $ *" #+ 2 2 ( #+ 0 # / % *#+ 0 3 # ( * 1 1" Z0[= #+ 0 http://staff.alzahra.ac.ir/mamwad/x1/x1-010.pdf )Rutqu 0 ∇2 := = ∂2 ∂2 + , 2 ∂x ∂y 2 1 D2 (u, v) 1 7 8_ A z N6 ∂2 ∂2 + 2 ∂u ∂v 2 (x, y) , . 4 u ew2 .) $ (u, v) ew2 u V A* , $ ew2 7 8_ k ew2 k)( u ew2 )Ru tqu 8_ k 6 , $ (u, v) u u ew2 )R tq 8_ + 6 M & $ ew2 h U A, (ρ, φ, z) I* $ U A, X ew2 I * A ew2 * (u, φ, v) ew2 D* I ,+ U A, = ρ = a cosh u cos v, * * −∞ < u < ∞ −(π/2) ≤ v ≤ (π/2) G C * - ! X u = const * z = a sinh u sin v. u = const * 0 ≤ u < ∞ * v = const (u, v) D* q ( # ! 4* q ( = C7 - ! q q/ 6 * =C7 -!qq/ 5 + ) ! 0 ≤ v ≤ (π/2) v = const * * * GC * -!X6 # - * $ q q/ X z d D ( (ρ = a, z = 0) - * , w 2 + -f -$ 7 ds2 := dρ2 + ρ2 dφ2 + dz 2 , = D2 (u, v)(du2 + dv 2 ) + a2 cosh2 u cos2 v d2 φ, 6 )Rutqu * ∇2 := = ∂2 ∂2 ∂2 + + 2, 2 2 ∂x ∂y ∂z 1 D2 (u, v) + ∂ 1 ∂ ∂ 1 ∂ cosh u + cos v cosh u ∂u ∂u cos v ∂v ∂v ∂2 1 . a2 cosh u cos2 v ∂φ2 2 7 U A, = (ρ, φ, z) e w 2 * (s, φ, t) e w 2 4* I ρ = a sinh s cos t, - ! X s = const * z = a cosh s sin t. −(π/2) ≤ t ≤ π/2 , w 2 * = C* - ! q q/ 6 (ρ = 0, z = ±a) -$ * 8 0 ≤ s < ∞ (s, t) t = const * * qq/ * X + )! + f $ * z dD( #- * 7 ds2 := dρ2 + ρ2 dφ2 + dz 2 , = F 2 (s, t)(ds2 + dt2 ) + a2 sinh2 s cos2 t dφ2 , 9 $ F 2 (s, t) := a2 (cosh2 s − sin2 t), = a2 (sinh2 s + cos2 t). 10 )Rutqu ∇2 := = ∂2 ∂2 ∂2 + + , ∂x2 ∂y 2 ∂z 2 1 F 2 (u, v) + ∂ ∂ 1 ∂ ∂ 1 sinh s + cos t sinh s ∂s ∂s cos t ∂t ∂t 1 a2 2 sinh s cos2 ∂2 . 2 ∂φ t 11 u u qA 8( R5 : 0 6 $ U A, $ ew2 I NRtq a + ew2 7,PT * 7,* _q R) A 1 40 $ 9' #: $ '# , 1 &1"' $ 9' $ '# , $ $ '# , $ &:' . 9 ; L - c y 6 R) * :H A* q' - ', R) D* R) &' -: _ _q - #- * 4* R) &' n :5 d3a )PT π/2 + ,- _ _q 8)C - 6 λ qP qK= 2a 1.1 BC 6$ ")( 6 ! z d d * y = 0, −a ≤ x ≤ a NRutqu qA %&' +C -* $ a y * + C % & ' x %, _ _q 8)C e a c * ∇2 Φ = 0, * v * 6 K 3 u , (y = 0 ∨ |x| > a). u=0 R ) ∂2 ∂2 + 2 ∂u ∂v 2 12 y 8)C NC Φ = 0, u > 0, x M + C 2π DP ( 13 * Φ(u = 0, v) = Φ0 2π c + * + * v 14 .) 8)C +*]5 * Φ(u, v + 2π) = Φ(u, v). 4M 6 u → ∞ 15 8)C # ) #$ 8)C - * y Q R 7 . J ρ $ $ ")( 0 NC Φ≈− ρ λ ln , 2π ρ0 ρ → ∞. 16 u → ∞ A ρ → ∞ 6 6 * ρ≈ a eu , 2 0 /! 7 ρ → ∞. 17 V - $ Φ≈− ) v .) Φ λ u + const, 2π #$ Φ u → ∞. 18 A, 15 * 18 14 13 & b c # Φ= ∞ αk (u)ei k v , 19 k=−∞ V - $ d2 − k2 du2 αk (u) = 0. 20 qA "0 αk (u) = βk e|k| u + γk e−|k| u , k = 0, α0 (u) = γ0 + β0 u 21 18 V y k = 0, βk = 0, 22 * β0 = − λ . 2π 23 8)C Φ=− λ γk e−|k| u ei k v . u + γ0 + 2π 24 k=0 14 V k = 0. γk = 0, y 25 0 Φ=− λ u + γ0 . 2π 26 14 * 0 , y 0 , $ - & - * C " 0 ! 6 K u % , ' # D* 8 ) C 13 ,+ + 7 q A * 18 y NRu tqu qA "0 ,7 XS "0 -: R f c a 3 6 u 6 _ J # : * 26 : A , 8w# Q F P ' c a2 1 y * x 1 & k)( x2 y2 + 2 = 1. 2 cosh u a sinh2 u 27 c R f y R) 7 8_ M R) X ew2 +3 e a - d u $ 6 , $ e w 2 R ) -O -* d3a c Rf B * * c yR2 R) c !+ 6 _ _q - E= λ ∇u. 2π d& qK= * 28 3a Ex u=0 * R:0 σ(x) = sgn(y) Ey (x, y)|y→0 , = sgn(y) = λ - = 6 $ λ 2π √ λ , 2π a sin v λ . a2 − x2 29 % & ' * e . 5 D K + !+ qP qK= 26 # x NC B B 8)CF ] -f qA 3a DP (* ./ 0123 3R * $ v # $ S* K Q I - = $ q ( 7 0 8 ( * 2a 1.2 D P 3 a ) P T - : 5 8.S R) _ _q - * )PT - e a u u cn B = = µ = 1 6 # 0 I ẑ × E, λ I ẑ × ∇u, 2π ! * 28 30 c d& - 0 qK= Js (x) = ẑ qK= z F P - 0 2π √ E & _ _q - 29 - $ f I . a2 − x2 31 +/! - 0qK= - 0qK= $ 0, ' * 8$ - &'. 9 ' '# < #: , $ => _ _q R) + - 2a -* F P d 3 a n̂ : 5 BC $ K $ E0 n̂ 2 Q d3a * _ _ q - $ $ - 6 ) P T R ) e* 3 d 3 a F P* B 0 R)* d t̂ $ B0 t̂ × n̂ * )PT - n 8., 6 !+ 6 d3a 8 $ K Q 6) + "2 y = - 7 d 3 a F P * F _ * _ _ q - * F _ 3 R 7 d 3 a F P F _ * * d 3 a _ J _ NC :5 3R '# * _ _q - -= - 7 d3a * d3a _ q 3a - : :5 F_ * d3a F P* 7 - :5 3R '# $ - #H _ d3a F P* $ !- c + D* - y R ) " 0 $ J = 4* R ) - - : K F P S F P 7 * * 7 0 : _ _ q - 0 d3a F_ * )PT - $ v # 6 )PT R) d3a :5 3R 4RA M DM f DM 7 - 7 F_ * - NC -7 d3a F P* 7 - - $ $ JV, o& - 7 #H d3a F P* -7 L :5 R) )PT - A*] K F P S d3a F P 7 F_ * L* Jq u 0: :5 F_ d 4,"! 5 ( 6 47 48 9 ,- * 6 L:H 2.1 P $ d 3 a e a 6 ! 8 . S 1 2 8 _ - : K v=π , * v=0 D A X e w 2 + _ , $ y 0≤v≤π * −∞ < u < ∞ v = 0 ∨ v = π. Φ = 0, 32 * Φ ≈ −E0 |y|, (x2 + y 2 ) → ∞. 33 $ 0 y n̂ = sgn(y) ŷ. b 6 # ) v . ) Φ 32 * 6 $ + 3 34 y c6 Φ= ∞ αk (u) sin k v. 35 k=1 0- * * 20 αk V * NRutqu qA a Φ $ αk (u) = βk ek u + γk e−k u . 36 V βk = γk = 0, k = 1, 33 y 37 * β1 = γ1 = − a E0 . 2 38 NC Φ = −a E0 cosh u sin v, a2 sin v 39 * 27 cosh u y2 x2 − 2 2 = 1. 2 cos v a sin v - $ 40 6 _ _q - E = a E0 ∇(cosh u sin v). 41 c d& qK= 29 f σ(x) = sgn(y) Ey (x, y)|y→0 , = sgn(y) E0 = E0 √ 7 qK= 7 D K * cosh u , sinh u |x| . − a2 42 x2 |x| < R , qK= ! D K F] + !+ 3a R → ∞ |x| < R , 4,"! 5 ( 6 47 48 9 0123 R) x=0 2.2 3a )PT - :5 3R * $ v # 6 0 cn 8., 8.S R) B = a B0 ẑ × ∇(cosh u sin v). c 41 qK= . 6 d& - 0 Js (x) = ẑ B0 √ |x| . x2 − a2 43 t̂ = ẑ $ 6 0, 44 |x| < R , 7 qK= 7 D K * qK= D K F] + 6 0 ! 3a R → ∞ |x| < R , 3 #: $ ? @ , $ 1 &1"' $ 9' " ) ( - _ Q _ q - 6 a I A ? S 7 z=0 d3a ? S 6$ 8 ( ew2 ? S 6 ! ew2 Y . - J$ * $ R) Φ = Φ0 , u=0 X u = 0, 45 * Φ → 0, q A 8 ) C # ! u > 0 φ 8') ? S -* (ρ2 + z 2 ) → ∞. Q 46 ? S 8 $ $ - = 8)C - ': -= * Φ0 L : H NRu tqu a e a 1 ∂ ∂ 1 ∂ ∂ Φ = 0. cosh u + cos v cosh u ∂u ∂u cos v ∂v ∂v X ew2 k)( 46 y $ 0 v * u 47 ew2 .) 8)C Φ → 0, c6 ! 8)C u → ∞. v 8') +B 7 NC ) v 48 y $ + %, d d 1 cosh u Φ = 0. cosh u du du 49 c 8')& "0 * qA P̃0 (u) := 1, Q̃0 (u) := tan−1 (sinh u). * Φ = Φ0 1 − 50 48 * 45 y 2 tan−1 (sinh u) , π $ "0 = 2Φ0 cot−1 (sinh u) π 51 c $ +3 ? S * Ra# 8)C # Φ ≈ ≈ Φ0 - * 2Φ0 , π sinh u 4Φ0 . π eu 52 Φ ≈ ≈ 4π Q ρ2 + z 2 Q? S -= , Q . 2π a eu 53 0 Φ0 = Q , 8a 54 * Φ= + 8., Q cot−1 (sinh u). 4π a (ρ, z) (x, y) - 55 $ 27 f & u _ _q - E= Q ∇u, 4π a cosh u 56 d& qK= - * * Q σ= 4π a a2 − ρ 2 . 57 54 c ? S # x C = 8a. 4V 58 4 < #: , => , 1. # . 1 &1"' $ 9' $ $ - &'. 9 ' ? @ * _ _q - + - a IA ? S $ K 0, d3a -* F P * d3a 3 12 f ew2 "2 Q d3a 7 n̂ :5 _ 2 $ E0 n̂ ? S 12 d . y : y 8)C + Φ = 0, v = 0, 59 * Φ ≈ −E0 |z|, 8 ) C L : H 6 # ! φ 8') (ρ2 + z 2 ) → ∞ 0 ≤ v ≤ (π/2) * 60 −∞ < u < ∞ (u, v) 8)C - ': -= * * e w 2 k ) ( 60 y * 47 + ) ! * 6 NRutqu qA 8 ) C e a # ! X Φ ≈ −a E0 | sinh u| sin v, .) K * u .) 7 8) 3 * -6 +b* k)( |u| → ∞. 61 47 !8:5 * I:V ^= F P !8:5 8)C NC 00 6 $ v c ) Φ= Uµ (u)Vµ (v), 62 µ $ d d 1 cosh u U = µU cosh u du du d 1 d cos v V = −µ V. cos v dv dv 63 ξ := sin v T T, 4* qA 64 c 8., bqO qA e (1 − ξ 2 ) µ = l(l + 1) ! 3a 1 3a * $ ) 8_ d2 d − 2ξ V = −µ V. dξ 2 dξ 62 NC Φ= ±1 #p 4 ∞ 3 65 #p "0 qA 8w# 3 * oda 5 ζl (u)Pl (sin v), l $ 66 l=1 +3 bqO R:0= e P1 (ξ) = ξ, 66 $ 67 bqO R:0= & D]' J * 61 e F P V c 3a s l=1 R:0 '# Φ = ζ1 (u) sin v, 68 Pl ζ1 $ 1 d d ζ1 = 2ζ1 cosh u cosh u du du 69 c 8')& "0 * M qA * P̃1 (u) := sinh u, Q̃1 (u) := 1 + sinh u tan−1 (sinh u). NC 6 K Φ=− Q1 " X ζ1 70 61 V y 2a E0 [1 + sinh u tan−1 (sinh u)] sin v. π 71 _ _q - 0 E= 2a E0 ∇{[1 + sinh u tan−1 (sinh u)] sin v}, π z → 0 E · ẑ sgn(z) A σ= E0 2E0 π a ρ 2 − a2 + tan−1 ρ 2 − a2 a 72 d& qK= * . 73 qK= D K qK= D K F] -f !+ 7 ! 3a R → ∞ R ρ=0 IA , 5 < #: , => , 1. # . 40 $ 9' $ $ - &'. 9 ' ? @ ? S * )PT - $ v # * d3a -* ( c# ! K Q 8.S 12 R) -: 3a - o& :5 3R o& * * B0 sgn(z)x̂ q_ 8)C 7 if )PT - 0- NC 6+ B = −∇ΦM , v = 0. 74 y * NRutqu qA 8)C a ΦM ≈ −a B0 cosh u cos v cos φ sgn(z), |u| → ∞, 75 * ∂ΦM ∂v b 76 v=0 y e a # ) c φ .) 8)C * cos φ k 8)C ΦM = Ψ(u, v) cos φ. 0 * 75 V 77 NRutqu qA a 1 ∂ ∂ 1 ∂ ∂ cosh2 u − cos2 v cosh u + cos v − cosh u ∂u ∂u cos v ∂v ∂v cosh2 u cos2 v Φ Ψ = 0. 78 ∂ ∂ 1 ∂ 1 1 ∂ 1 cosh u + cos v − + Ψ = 0. cosh u ∂u ∂u cos v ∂v ∂v cos2 v cosh2 u NC 00 6 $ 8) 3 c ) !8:5 * I:V ^= F P !8:5 6 0 !8:5* -6 q(+b* k)( Ψ= Xµ (u)Yµ (v), 79 Ψ 80 µ $ d 1 d 1 X = µX cosh u + cosh u du du cosh2 u 1 d d 1 Y = −µ Y. cos v − cos v dv dv cos2 v 81 c 8., bqO 7., )* qA 4* qA e (1 − ξ 2 ) ! ξ .) Z* * 80 = 64 ξ=1 T T, 1 d2 d − − 2ξ Y = −µ Y. dξ 2 dξ 1 − ξ2 #p "0 4 e a 3 ξ = ±1 82 #p "0 qA 8 w # 3 * o d a l $ µ = l(l + 1) Ψ= ∞ ηl (u)P1l (sin v), 83 l=1 +3 P11 (ξ) = 75 V 1 ., bqO )* %, e 1 − ξ2, m = 1 R:0 m ., c $ 84 bqO%, & D]' J * 3a s e l=1 R:0 '# 83 F P Ψ = η1 (u) cos v, 85 P1l η1 $ d 1 d 1 η1 = 2η1 cosh u + cosh u du du cosh2 u 86 c 8')& "0 * M qA * P̃11 (u) := cosh u, Q̃11 (u) := tanh u + cosh u tan−1 (sinh u). NC 6 K Ψ=− Q11 " X η1 87 75 V 2a B0 [tanh u + cosh u tan−1 (sinh u)] cos v, π y 88 0- * ΦM = − 2a B0 [tanh u + cosh u tan−1 (sinh u)] cos v cos φ. π 89 )PT - k, , B= 2a B0 ∇{[tanh u + cosh u tan−1 (sinh u)] cos v cos φ}. π 90 6 d& - 0 qK= Js = ẑ × B sgn(z)|z→0 , 91 73 $ + f - $ AB; 6 [1] James Ward Brown & Ruel V. Churchill; “Complex variables and applications”, 6th edition (Mc Graw-Hill, 1996) chapter 9 “ 7 J# RV z - - ', * H 5 A* )PT* _q - ” z :d n n>> , n>n lm~{ > _e [3] John David Jackson; “Classical electrodynamics”, 3rd edition (John Wiley & Sons, 1998) ? , $ AC:' [a] Laplace [b] Fourier [c] Dirichlet [d] Neumann [e] Legendre 7