, 1, 2014 629.11.012.533 . , . , . . . . E-mail: [email protected] .) . . . . (473) 255-38-75 . .- . . . ) . (473) 226-18-88 , E-mail: [email protected] Associate Professor A.A. Khvostov, professor S.G. Tikhomirov, senior lecturer D.I. Rebrikov (Voronezh, Russia. state Univeritying. technology.) Department of information and control systems. phone (473) 255-38-75 E-mail: [email protected] lecturer A.A. Nikitchenko (Military-air academy of a name of professor N.E. Zhukovskii and Iu.A. Gagarin) Department of research and designing of airdromes. Phone, (473) 226-18-88 E-mail: [email protected] » Algorithm for estimating the time window signal "white noise" in the problems of acoustic spectrometry elastomers . « » - . « » - . « » . , , , . « ( » - ) , . « », . . Summary. In article the problem of choice of an optimum time interval and a quantization step at measurement of spectral characteristics of objects with using «white noise» signal with restrictions by technical possibilities of signal registration is considered. In the application of "white noise" as a stationary perturbing signal problems arise with the presence of distortions in the frequency spectrum due to the limited resolution of the digital recording device. When used in experimental studies of digital technology there is the possibility of distortion due to restrictions on the time signal "white noise" for a fixed number of points of the signal due to limited recording memory oscilloscope. For small time intervals distortion occurs in the low frequency region of the spectrum and at large intervals signal is distorted in the high-frequency area due to the lower sampling rate and, accordingly, the loss of information. To minimize distortions in the spectrum of the emitted signal it is proposed selection algorithm of the time window signal type "white noise" fixed (in the sense of the amount of sampling points) in terms of sample tasks for acoustic spectrometry based on the estimation of parameters of a linear function that approximates the spectrum and characterizing the linear trend. : , , , . Keywords: white noise spectrum, time interval, quantization step. © 68 ., ., ., ., 2014 , 1, 2014 n 1 fm [1]. » « Sj fm - tj j t f, - j 0 mj Sj n , k 1, 1, (2) , m , j m m ; . . , i , . : Flinfit - « » L1, L2 , i . - , : S , , - (3) L1,i . - L2,i , L1,i i 1 n n fj j 1 2 fj L1 , L2 (4) min - - . ( 1). 30 « » ( - 25 , ) , - 20 . 15 : 10 ; ; 3 0 - 3 1 10 2 10 3 3 10 3 4 10 , , ---- , . « » 1. . . f i– f, : F i i , i 1, Kt , F- , - L1,i i– (1) . - - , Kt – - . L1,i ( ) . S t f [2] Mathcad 15 [3]: , L1,i 69 , 1, 2014 - - , « » - : ti t , HIOKI 7076, RIGOL DS 1102 (5) » L1,i « ( -112-0.6 2). - 0,6 1 10 1 . 3 200 800 . , 2 » 2, « - , - , - . L1,i 3 i=1; i<N; i++ ti i . 4 « 3 i- - L1,i » « ti » ti , 3 . , , 5 « - » L1,i 6 . , 0.01 7 5 10 3 L1,i L1,i , L2,i 0 L1,i 8 L1,i 9 2. « 70 5 10 3 0.01 3 1 10 0.01 0.1 1 10 100 ti, 3. ». 3 1 10 i« ». , 1, 2014 ( ( 25 100 0,001 ) 0,01 ) - , . 4 , , . « - , « (3), » », - -112-0.6, - RIGOL DS 1102. 50 100 200 40 1 5 1 f 30 20 10 10 0 0 50 100 , 4. « » . , - , (4) (1 , - ) 5 . [4]. « , », 5 - , (3) ( , 5) - 2 . . 0.8 10 0.6 1 100 0.4 f 10 ) 10 0.2 0 5. 0 100 « 200 » , . 71 , 1, 2014 , - . - « . », REFERENCES 1 ., , , 2007. 500 . 2 ., .: : - . . .: , 1971. 316 . . Mathcad 2001: , 2001. 621 . ., ., . - 3 . . . : 4 ., // . 2008. 1(31). . 124-126. 5 Honerkamp J., Roths T., Maier D., Friedrich C. et al. Determination of the relaxation time spectrum from dynamic moduli using an edge preserving regularization method. Rheologica Acta, 2000, vol. 3, no. 2, pp. 163-173. 72 1 Malkin A.Ia., Isaev A.I. Reologiia: kontseptsii, metody prilozheniya [Rheology: concepts, application methods]. Sent-Petersburg, Professiia, 2007. 500 p. (In Russ.). 2 Dzhenkins G., Vatts D. Spektralnyi analiz i ego prilozheniia [Spectral analysis and its applications]. Moscow, Mir, 1971. 316 p. (In Russ.). 3 D’iakonov V. Mathcad 2001 [Mathcad 2001]. Sent-Petersburg, Piter, 2001. 621 p. (In Russ.). 4 Bitiukov V.K., Tikhomirov S.G., Khvostov A.A., Zaichikov M.A. Estimation of polymer quality parameters with frequence spectra of strength module. Sistemy upravleniia i in-formatsionnye tekhnologii. [Control systems and Information technology], 2008, no. (31), pp. 124-126. (In Russ.). 5 Honerkamp J., Roths T., Maier D., Friedrich C. et al. Determination of the relaxation time spectrum from dynamic moduli using an edge preserving regularization method. Rheologica Acta, 2000, vol. 3, no. 2, pp. 163-173.